Visible to the public Biblio

Filters: Keyword is malware dataset  [Clear All Filters]
2022-02-07
Çelık, Abdullah Emre, Dogru, Ibrahim Alper, Uçtu, Göksel.  2021.  Automatic Generation of Different Malware. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.
The use of mobile devices has increased dramatically in recent years. These smart devices allow us to easily perform many functions such as e-mail, internet, Bluetooth, SMS and MMS without restriction of time and place. Thus, these devices have become an indispensable part of our lives today. Due to this high usage, malware developers have turned to this platform and many mobile malware has emerged in recent years. Many security companies and experts have developed methods to protect our mobile devices. In this study, in order to contribute to mobile malware detection and analysis, an application has been implemented that automatically injects payload into normal apk. With this application, it is aimed to create a data set that can be used by security companies and experts.
2020-10-29
Xylogiannopoulos, Konstantinos F., Karampelas, Panagiotis, Alhajj, Reda.  2019.  Text Mining for Malware Classification Using Multivariate All Repeated Patterns Detection. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :887—894.

Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.

2019-06-10
Kim, H. M., Song, H. M., Seo, J. W., Kim, H. K..  2018.  Andro-Simnet: Android Malware Family Classification Using Social Network Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-8.

While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.

2014-09-26
Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van Steen, M..  2012.  Prudent Practices for Designing Malware Experiments: Status Quo and Outlook. Security and Privacy (SP), 2012 IEEE Symposium on. :65-79.

Malware researchers rely on the observation of malicious code in execution to collect datasets for a wide array of experiments, including generation of detection models, study of longitudinal behavior, and validation of prior research. For such research to reflect prudent science, the work needs to address a number of concerns relating to the correct and representative use of the datasets, presentation of methodology in a fashion sufficiently transparent to enable reproducibility, and due consideration of the need not to harm others. In this paper we study the methodological rigor and prudence in 36 academic publications from 2006-2011 that rely on malware execution. 40% of these papers appeared in the 6 highest-ranked academic security conferences. We find frequent shortcomings, including problematic assumptions regarding the use of execution-driven datasets (25% of the papers), absence of description of security precautions taken during experiments (71% of the articles), and oftentimes insufficient description of the experimental setup. Deficiencies occur in top-tier venues and elsewhere alike, highlighting a need for the community to improve its handling of malware datasets. In the hope of aiding authors, reviewers, and readers, we frame guidelines regarding transparency, realism, correctness, and safety for collecting and using malware datasets.