Visible to the public Biblio

Filters: Keyword is hardware parallelism  [Clear All Filters]
2017-04-20
Najjar-Ghabel, S., Yousefi, S., Lighvan, M. Z..  2016.  A high speed implementation counter mode cryptography using hardware parallelism. 2016 Eighth International Conference on Information and Knowledge Technology (IKT). :55–60.
Nowadays, cryptography is one of the common security mechanisms. Cryptography algorithms are used to make secure data transmission over unsecured networks. Vital applications are required to techniques that encrypt/decrypt big data at the appropriate time, because the data should be encrypted/decrypted are variable size and usually the size of them is large. In this paper, for the mentioned requirements, the counter mode cryptography (CTR) algorithm with Data Encryption Standard (DES) core is paralleled by using Graphics Processing Unit (GPU). A secondary part of our work, this parallel CTR algorithm is applied on special network on chip (NoC) architecture that designed by Heracles toolkit. The results of numerical comparison show that GPU-based implementation can be achieved better runtime in comparison to the CPU-based one. Furthermore, our final implementations show that parallel CTR mode cryptography is achieved better runtime by using special NoC that applied on FPGA board in comparison to GPU-based and CPU ones.
2015-05-06
Pi-Chung Wang.  2014.  Scalable Packet Classification for Datacenter Networks. Selected Areas in Communications, IEEE Journal on. 32:124-137.

The key challenge to a datacenter network is its scalability to handle many customers and their applications. In a datacenter network, packet classification plays an important role in supporting various network services. Previous algorithms store classification rules with the same length combinations in a hash table to simplify the search procedure. The search performance of hash-based algorithms is tied to the number of hash tables. To achieve fast and scalable packet classification, we propose an algorithm, encoded rule expansion, to transform rules into an equivalent set of rules with fewer distinct length combinations, without affecting the classification results. The new algorithm can minimize the storage penalty of transformation and achieve a short search time. In addition, the scheme supports fast incremental updates. Our simulation results show that more than 90% hash tables can be eliminated. The reduction of length combinations leads to an improvement on speed performance of packet classification by an order of magnitude. The results also show that the software implementation of our scheme without using any hardware parallelism can support up to one thousand customer VLANs and one million rules, where each rule consumes less than 60 bytes and each packet classification can be accomplished under 50 memory accesses.