Visible to the public Biblio

Found 354 results

Filters: Keyword is mobile computing  [Clear All Filters]
2020-12-02
Abeysekara, P., Dong, H., Qin, A. K..  2019.  Machine Learning-Driven Trust Prediction for MEC-Based IoT Services. 2019 IEEE International Conference on Web Services (ICWS). :188—192.

We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.

2020-12-01
Garbo, A., Quer, S..  2018.  A Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices. IEEE Access. 6:52027—52046.
The Moving Picture Experts Group's Compact Descriptors for Visual Search (MPEG's CDVS) intends to standardize technologies in order to enable an interoperable, efficient, and cross-platform solution for internet-scale visual search applications and services. Among the key technologies within CDVS, we recall the format of visual descriptors, the descriptor extraction process, and the algorithms for indexing and matching. Unfortunately, these steps require precision and computation accuracy. Moreover, they are very time-consuming, as they need running times in the order of seconds when implemented on the central processing unit (CPU) of modern mobile devices. In this paper, to reduce computation times and maintain precision and accuracy, we re-design, for many-cores embedded graphical processor units (GPUs), all main local descriptor extraction pipeline phases of the MPEG's CDVS standard. To reach this goal, we introduce new techniques to adapt the standard algorithm to parallel processing. Furthermore, to reduce memory accesses and efficiently distribute the kernel workload, we use new approaches to store and retrieve CDVS information on proper GPU data structures. We present a complete experimental analysis on a large and standard test set. Our experiments show that our GPU-based approach is remarkably faster than the CPU-based reference implementation of the standard, and it maintains a comparable precision in terms of true and false positive rates.
SAADI, C., kandrouch, i, CHAOUI, H..  2019.  Proposed security by IDS-AM in Android system. 2019 5th International Conference on Optimization and Applications (ICOA). :1—7.

Mobile systems are always growing, automatically they need enough resources to secure them. Indeed, traditional techniques for protecting the mobile environment are no longer effective. We need to look for new mechanisms to protect the mobile environment from malicious behavior. In this paper, we examine one of the most popular systems, Android OS. Next, we will propose a distributed architecture based on IDS-AM to detect intrusions by mobile agents (IDS-AM).

Byrne, K., Marín, C..  2018.  Human Trust in Robots When Performing a Service. 2018 IEEE 27th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :9—14.

The presence of robots is becoming more apparent as technology progresses and the market focus transitions from smart phones to robotic personal assistants such as those provided by Amazon and Google. The integration of robots in our societies is an inevitable tendency in which robots in many forms and with many functionalities will provide services to humans. This calls for an understanding of how humans are affected by both the presence of and the reliance on robots to perform services for them. In this paper we explore the effects that robots have on humans when a service is performed on request. We expose three groups of human participants to three levels of service completion performed by robots. We record and analyse human perceptions such as propensity to trust, competency, responsiveness, sociability, and team work ability. Our results demonstrate that humans tend to trust robots and are more willing to interact with them when they autonomously recover from failure by requesting help from other robots to fulfil their service. This supports the view that autonomy and team working capabilities must be brought into robots in an effort to strengthen trust in robots performing a service.

2020-11-17
Qian, K., Parizi, R. M., Lo, D..  2018.  OWASP Risk Analysis Driven Security Requirements Specification for Secure Android Mobile Software Development. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines.
Jaiswal, M., Malik, Y., Jaafar, F..  2018.  Android gaming malware detection using system call analysis. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1—5.
Android operating systems have become a prime target for attackers as most of the market is currently dominated by Android users. The situation gets worse when users unknowingly download or sideload cloning applications, especially gaming applications that look like benign games. In this paper, we present, a dynamic Android gaming malware detection system based on system call analysis to classify malicious and legitimate games. We performed the dynamic system call analysis on normal and malicious gaming applications while applications are in execution state. Our analysis reveals the similarities and differences between benign and malware game system calls and shows how dynamically analyzing the behavior of malicious activity through system calls during runtime makes it easier and is more effective to detect malicious applications. Experimental analysis and results shows the efficiency and effectiveness of our approach.
Maksutov, A. A., Dmitriev, S. O., Lysenkov, V. I., Valter, D. A..  2018.  Mobile bootloader with security features. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :335—338.
Modern mobile operating systems store a lot of excessive information that can be used against its owner or organization, like a call history or various system logs. This article describes a universal way of preventing any mobile operating system or application from saving its data in device's internal storage without reducing their functionality. The goal of this work is creation of a software that solves the described problem and works on the bootloading stage. A general algorithm of the designed software, along with its main solutions and requirements, is presented in this paper. Hardware requirement, software testing results and general applications of this software are also listed in this paper.
2020-11-04
Peruma, A., Malachowsky, S., Krutz, D..  2018.  Providing an Experiential Cybersecurity Learning Experience through Mobile Security Labs. 2018 IEEE/ACM 1st International Workshop on Security Awareness from Design to Deployment (SEAD). :51—54.

The reality of today's computing landscape already suffers from a shortage of cybersecurity professionals, and this gap only expected to grow. We need to generate interest in this STEM topic early in our student's careers and provide teachers the resources they need to succeed in addressing this gap. To address this shortfall we present Practical LAbs in Security for Mobile Applications (PLASMA), a public set of educational security labs to enable instruction in creation of secure Android apps. These labs include example vulnerable applications, information about each vulnerability, steps for how to repair the vulnerabilities, and information about how to confirm that the vulnerability has been properly repaired. Our goal is for instructors to use these activities in their mobile, security, and general computing courses ranging from secondary school to university settings. Another goal of this project is to foster interest in security and computing through demonstrating its importance. Initial feedback demonstrates the labs' positive effects in enhancing student interest in cybersecurity and acclaim from instructors. All project activities may be found on the project website: http://www.TeachingMobileSecurity.com

2020-11-02
Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., Sun, C..  2019.  DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification. IEEE Access. 7:35302–35316.
Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks. Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehavior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of an event. Besides, without considering the privacy of the nodes, these methods depend on the central control program or a third party to supervise the whole network. In this paper, we present a system called DAPV that can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the expected log information of the peers with the known log entries. Second, the privacy-preserving verification uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks. Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the overhead of DAPV is moderate.
Mohsen, Y., Hamdy, M., Shaaban, E..  2019.  Key distribution protocol for Identity Hiding in MANETs. 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). :245–252.
Mobile Ad-hoc Networks (MANETs) are formed when a group of mobile nodes, communicate through wireless links in the absence of central administration. These features make them more vulnerable to several attacks like identity spoofing which leads to identity disclosure. Providing anonymity and privacy for identity are critical issues, especially when the size of such networks scales up. to avoid the centralization problem for key distribution in MANETs. This paper proposes a key distribution scheme for clustered ad-hoc networks. The network is divided into groups of clusters, and each cluster head is responsible for distributing periodically updated security keys among cluster members, for protecting privacy through encryption. Also, an authentication scheme is proposed to ensure the confidentiality of new members to the cluster. The simulation study proves the effectiveness of the proposed scheme in terms of availability and overhead. It scales well for high dense networks and gives less packet drop rate compared to its centralized counterpart in the presence of malicious nodes.
Gupta, D. S., Islam, S. H., Obaidat, M. S..  2019.  A Secure Identity-based Deniable Authentication Protocol for MANETs. 2019 International Conference on Computer, Information and Telecommunication Systems (CITS). :1–5.
A deniable authentication (DA) protocol plays a vital role to provide security and privacy of the mobile nodes in a mobile ad hoc network (MANET). In recent years, a number of similar works have been proposed, but most of them experience heavy computational and communication overhead. Further, most of these protocols are not secure against different attacks. To address these concerns, we devised an identity-based deniable authentication (IBDA) protocol with adequate security and efficiency. The proposed IBDA protocol is mainly designed for MANETs, where the mobile devices are resource-limited. The proposed IBDA protocol used the elliptic curve cryptography (ECC) and identity-based cryptosystem (IBC). The security of our IBDA protocol depends on the elliptic curve discrete logarithm (ECDL) problem and bilinear Diffie-Hellman (BDH) problem.
Sharma, Sachin, Ghanshala, Kamal Kumar, Mohan, Seshadri.  2018.  A Security System Using Deep Learning Approach for Internet of Vehicles (IoV). 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :1—5.

The Internet of Vehicles (IoV) will connect not only mobile devices with vehicles, but it will also connect vehicles with each other, and with smart offices, buildings, homes, theaters, shopping malls, and cities. The IoV facilitates optimal and reliable communication services to connected vehicles in smart cities. The backbone of connected vehicles communication is the critical V2X infrastructures deployment. The spectrum utilization depends on the demand by the end users and the development of infrastructure that includes efficient automation techniques together with the Internet of Things (IoT). The infrastructure enables us to build smart environments for spectrum utilization, which we refer to as Smart Spectrum Utilization (SSU). This paper presents an integrated system consisting of SSU with IoV. However, the tasks of securing IoV and protecting it from cyber attacks present considerable challenges. This paper introduces an IoV security system using deep learning approach to develop secure applications and reliable services. Deep learning composed of unsupervised learning and supervised learning, could optimize the IoV security system. The deep learning methodology is applied to monitor security threats. Results from simulations show that the monitoring accuracy of the proposed security system is superior to that of the traditional system.

Ivanov, I, Maple, C, Watson, T, Lee, S.  2018.  Cyber security standards and issues in V2X communications for Internet of Vehicles. Living in the Internet of Things: Cybersecurity of the IoT – 2018. :1—6.

Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.

Sahbi, Roumissa, Ghanemi, Salim, Djouani, Ramissa.  2018.  A Network Model for Internet of vehicles based on SDN and Cloud Computing. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1—4.

Internet of vehicles (IoV) is the evolution of conventional vehicle network (VANET), a recent domain attracting a large number of companies and researchers. It is an integration of three networks: an inter-vehicle network, an intra-vehicle network, and vehicular mobile Internet, in which the vehicle is considered as a smart object equipped with powerful multi-sensors platform, connectivity and communication technologies, enabling it to communicate with the world. The cooperative communication between vehicles and other devices causes diverse challenges in terms of: storage and computing capability, energy of vehicle and network's control and management. Security is very important aspect in IoV and it is required to protect connected cars from cybercrime and accidents. In this article, we propose a network model for IoV based on software Defined Network and Cloud Computing.

Xiaoyu, Xu, Huang, Zhiqing, Lin, Zhuying.  2018.  Trajectory-Based Task Allocation for Crowd Sensing in Internet of Vehicles. 2018 International Conference on Robots Intelligent System (ICRIS). :226—231.

Crowd sensing is one of the core features of internet of vehicles, the use of internet of vehicles for crowd sensing is conducive to the rational allocation of sensing tasks. This paper mainly studies the problem of task allocation for crowd sensing in internet of vehicles, proposes a trajectory-based task allocation scheme for crowd sensing in internet of vehicles. With limited budget constraints, participants' trajectory is taken as an indicator of the spatiotemporal availability. Based on the solution idea of the minimal-cover problem, select the minimum number of participating vehicles to achieve the coverage of the target area.

Ermakov, Anton D., Prokopenko, Svetlana A., Yevtushenko, Nina V..  2018.  Security Checking Experiments with Mobile Services. 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). :139—141.
In this paper, we continue to investigate the problem of software security. The problem is to check if software under test has some vulnerabilities such as exceeding of admissible values of input/output parameters or internal variables or can reach states where the software (service) behavior is not defined. We illustrate by experiments that the well-known verifier Java Path Finder (JPF) can be utilized for this purpose. We apply JPF-mobile to Android applications and results of security checking experiments are presented.
2020-10-29
Bakht, Humayun, Eding, Samuel.  2018.  Policy-Based Approach for Securing Message Dissemination in Mobile Ad Hoc Networks. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :1040—1045.

Mobile ad hoc networks present numerous advantages compared to traditional networks. However, due to the fact that they do not have any central management point and are highly dynamic, mobile ad hoc networks display many issues. The one study in this paper is the one related to security. A policy based approach for securing messages dissemination in mobile ad hoc network is proposed in order to tackle that issue.

El-Zoghby, Ayman M., Mosharafa, Ahmed, Azer, Marianne A..  2018.  Anonymous Routing Protocols in MANETs, a Security Comparative Analysis. 2018 14th International Computer Engineering Conference (ICENCO). :254—259.

A Mobile Ad Hoc Network (MANET) is considered a type of network which is wireless and has no fixed infrastructure composed of a set if nodes in self organized fashion which are randomly, frequently and unpredictably mobile. MANETs can be applied in both military and civil environments ones because of its numerous applications. This is due to their special characteristics and self-configuration capability. This is due to its dynamic nature, lack of fixed infrastructure, and the no need of being centrally managed; a special type of routing protocols such as Anonymous routing protocols are needed to hide the identifiable information of communicating parties, while preserving the communication secrecy. This paper provides an examination of a comprehensive list of anonymous routing protocols in MANET, focusing their security and performance capabilities.

Mintu, Singh, Gursharan, Malhi, Simarjit Singh, Mahajan, Makul, Batra, Salil, Bath, Ranbir Singh.  2019.  Anatomization of Detection and Performance Measures Techniques for Flooding Attacks using Routing Protocols in MANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :160—167.
Mobile ad-hoc network (MANETS) is generally appropriate in different territories like military tactical network, educational, home and entertainment and emergency operations etc. The MANETSs are simply the disintegration and designing kind of system in this portable hubs coming up and out the system whenever. Because of decentralized creation of the network, security, routing and Standard of service are the three noteworthy issues. MANETSs are helpless against security attack in light of the decentralized validation. The mobile hubs can enter or out the system and at some point malicious hubs enter the system, which are capable to trigger different dynamic and inactive attack. The flooding attack is the dynamic sort of attack in which malicious hubs transfers flooding packets on the medium. Because of this, medium gets over-burden and packets drop may happen inside the system. This decreases the throughput and increased packet loss. In this paper we illustrated different techniques and proposed various methods responsible for flooding attack. Our commitment in this paper is that we have investigated various flooding attacks in MANETs, their detection techniques with performance measure parameters.
Xylogiannopoulos, Konstantinos F., Karampelas, Panagiotis, Alhajj, Reda.  2019.  Text Mining for Malware Classification Using Multivariate All Repeated Patterns Detection. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :887—894.

Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.

Jiang, Jianguo, Li, Song, Yu, Min, Li, Gang, Liu, Chao, Chen, Kai, Liu, Hui, Huang, Weiqing.  2019.  Android Malware Family Classification Based on Sensitive Opcode Sequence. 2019 IEEE Symposium on Computers and Communications (ISCC). :1—7.

Android malware family classification is an advanced task in Android malware analysis, detection and forensics. Existing methods and models have achieved a certain success for Android malware detection, but the accuracy and the efficiency are still not up to the expectation, especially in the context of multiple class classification with imbalanced training data. To address those challenges, we propose an Android malware family classification model by analyzing the code's specific semantic information based on sensitive opcode sequence. In this work, we construct a sensitive semantic feature-sensitive opcode sequence using opcodes, sensitive APIs, STRs and actions, and propose to analyze the code's specific semantic information, generate a semantic related vector for Android malware family classification based on this feature. Besides, aiming at the families with minority, we adopt an oversampling technique based on the sensitive opcode sequence. Finally, we evaluate our method on Drebin dataset, and select the top 40 malware families for experiments. The experimental results show that the Total Accuracy and Average AUC (Area Under Curve, AUC) reach 99.50% and 98.86% with 45. 17s per Android malware, and even if the number of malware families increases, these results remain good.

2020-10-26
Eryonucu, Cihan, Ayday, Erman, Zeydan, Engin.  2018.  A Demonstration of Privacy-Preserving Aggregate Queries for Optimal Location Selection. 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :1–3.
In recent years, service providers, such as mobile operators providing wireless services, collected location data in enormous extent with the increase of the usages of mobile phones. Vertical businesses, such as banks, may want to use this location information for their own scenarios. However, service providers cannot directly provide these private data to the vertical businesses because of the privacy and legal issues. In this demo, we show how privacy preserving solutions can be utilized using such location-based queries without revealing each organization's sensitive data. In our demonstration, we used partially homomorphic cryptosystem in our protocols and showed practicality and feasibility of our proposed solution.
Gul, M. junaid, Rabia, Riaz, Jararweh, Yaser, Rathore, M. Mazhar, Paul, Anand.  2019.  Security Flaws of Operating System Against Live Device Attacks: A case study on live Linux distribution device. 2019 Sixth International Conference on Software Defined Systems (SDS). :154–159.
Live Linux distribution devices can hold Linux operating system for portability. Using such devices and distributions, one can access system or critical files, which otherwise cannot be accessed by guest or any unauthorized user. Events like file leakage before the official announcement. These announcements can vary from mobile companies to software industries. Damages caused by such vulnerabilities can be data theft, data tampering, or permanent deletion of certain records. This study uncovers the security flaws of operating system against live device attacks. For this study, we used live devices with different Linux distributions. Target operating systems are exposed to live device attacks and their behavior is recorded against different Linux distribution. This study also compares the robustness level of different operating system against such attacks.
2020-10-16
Kő, Andrea, Molnár, Tamás, Mátyus, Bálint.  2018.  A User-centred Design Approach for Mobile- Government Systems for the Elderly. 2018 12th International Conference on Software, Knowledge, Information Management Applications (SKIMA). :1—7.

This paper aims to discover the characteristics of acceptance of mobile government systems by elderly. Several initiatives and projects offer various governmental services for them, like information sharing, alerting and mHealth services. All of them carry important benefits for this user group, but these can only be utilized if the user acceptance is at a certain level. This is a requirement in order for the users to perceive the services as a benefit and not as hindrance. The key aspects for high acceptance are usability and user-friendliness, which will lead to successful-government systems designed for the target group. We have applied a combination of qualitative and quantitative research methods including an m-Government prototype to explore the key acceptance factors. Research approach utilizes the IGUAN framework, which is a user-driven method. We collected and analysed data guided by IGUAN framework about the acceptance of e-government services by elderly. The target group was recruited from Germany and Hungary. Our findings draw the attention to perceived security and perceived usability of an application; these are decisive factors for this target group.

2020-10-14
Xie, Kun, Li, Xiaocan, Wang, Xin, Xie, Gaogang, Xie, Dongliang, Li, Zhenyu, Wen, Jigang, Diao, Zulong.  2019.  Quick and Accurate False Data Detection in Mobile Crowd Sensing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2215—2223.

With the proliferation of smartphones, a novel sensing paradigm called Mobile Crowd Sensing (MCS) has emerged very recently. However, the attacks and faults in MCS cause a serious false data problem. Observing the intrinsic low dimensionality of general monitoring data and the sparsity of false data, false data detection can be performed based on the separation of normal data and anomalies. Although the existing separation algorithm based on Direct Robust Matrix Factorization (DRMF) is proven to be effective, requiring iteratively performing Singular Value Decomposition (SVD) for low-rank matrix approximation would result in a prohibitively high accumulated computation cost when the data matrix is large. In this work, we observe the quick false data location feature from our empirical study of DRMF, based on which we propose an intelligent Light weight Low Rank and False Matrix Separation algorithm (LightLRFMS) that can reuse the previous result of the matrix decomposition to deduce the one for the current iteration step. Our algorithm can largely speed up the whole iteration process. From a theoretical perspective, we validate that LightLRFMS only requires one round of SVD computation and thus has very low computation cost. We have done extensive experiments using a PM 2.5 air condition trace and a road traffic trace. Our results demonstrate that LightLRFMS can achieve very good false data detection performance with the same highest detection accuracy as DRMF but with up to 10 times faster speed thanks to its lower computation cost.