Visible to the public Biblio

Filters: Keyword is convergent encryption  [Clear All Filters]
2023-02-17
Islam, Tariqul, Hasan, Kamrul, Singh, Saheb, Park, Joon S..  2022.  A Secure and Decentralized Auditing Scheme for Cloud Ensuring Data Integrity and Fairness in Auditing. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–79.
With the advent of cloud storage services many users tend to store their data in the cloud to save storage cost. However, this has lead to many security concerns, and one of the most important ones is ensuring data integrity. Public verification schemes are able to employ a third party auditor to perform data auditing on behalf of the user. But most public verification schemes are vulnerable to procrastinating auditors who may not perform auditing on time. These schemes do not have fair arbitration also, i.e. they lack a way to punish the malicious Cloud Service Provider (CSP) and compensate user whose data has been corrupted. On the other hand, CSP might be storing redundant data that could increase the storage cost for the CSP and computational cost of data auditing for the user. In this paper, we propose a Blockchain-based public auditing and deduplication scheme with a fair arbitration system against procrastinating auditors. The key idea requires auditors to record each verification using smart contract and store the result into a Blockchain as a transaction. Our scheme can detect and punish the procrastinating auditors and compensate users in the case of any data loss. Additionally, our scheme can detect and delete duplicate data that improve storage utilization and reduce the computational cost of data verification. Experimental evaluation demonstrates that our scheme is provably secure and does not incur overhead compared to the existing public auditing techniques while offering an additional feature of verifying the auditor’s performance.
ISSN: 2693-8928
2015-05-06
Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Lee, P.P.C., Wenjing Lou.  2014.  Secure Deduplication with Efficient and Reliable Convergent Key Management. Parallel and Distributed Systems, IEEE Transactions on. 25:1615-1625.

Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage to reduce storage space and upload bandwidth. Promising as it is, an arising challenge is to perform secure deduplication in cloud storage. Although convergent encryption has been extensively adopted for secure deduplication, a critical issue of making convergent encryption practical is to efficiently and reliably manage a huge number of convergent keys. This paper makes the first attempt to formally address the problem of achieving efficient and reliable key management in secure deduplication. We first introduce a baseline approach in which each user holds an independent master key for encrypting the convergent keys and outsourcing them to the cloud. However, such a baseline key management scheme generates an enormous number of keys with the increasing number of users and requires users to dedicatedly protect the master keys. To this end, we propose Dekey , a new construction in which users do not need to manage any keys on their own but instead securely distribute the convergent key shares across multiple servers. Security analysis demonstrates that Dekey is secure in terms of the definitions specified in the proposed security model. As a proof of concept, we implement Dekey using the Ramp secret sharing scheme and demonstrate that Dekey incurs limited overhead in realistic environments.