Biblio
This paper presents a computational model for managing an Embodied Conversational Agent's first impressions of warmth and competence towards the user. These impressions are important to manage because they can impact users' perception of the agent and their willingness to continue the interaction with the agent. The model aims at detecting user's impression of the agent and producing appropriate agent's verbal and nonverbal behaviours in order to maintain a positive impression of warmth and competence. User's impressions are recognized using a machine learning approach with facial expressions (action units) which are important indicators of users' affective states and intentions. The agent adapts in real-time its verbal and nonverbal behaviour, with a reinforcement learning algorithm that takes user's impressions as reward to select the most appropriate combination of verbal and non-verbal behaviour to perform. A user study to test the model in a contextualized interaction with users is also presented. Our hypotheses are that users' ratings differs when the agents adapts its behaviour according to our reinforcement learning algorithm, compared to when the agent does not adapt its behaviour to user's reactions (i.e., when it randomly selects its behaviours). The study shows a general tendency for the agent to perform better when using our model than in the random condition. Significant results shows that user's ratings about agent's warmth are influenced by their a-priori about virtual characters, as well as that users' judged the agent as more competent when it adapted its behaviour compared to random condition.
The dependability of Cyber Physical Systems (CPS) solely lies in the secure and reliable functionality of their backbone, the computing platform. Security of this platform is not only threatened by the vulnerabilities in the software peripherals, but also by the vulnerabilities in the hardware internals. Such threats can arise from malicious modifications to the integrated circuits (IC) based computing hardware, which can disable the system, leak information or produce malfunctions. Such modifications to computing hardware are made possible by the globalization of the IC industry, where a computing chip can be manufactured anywhere in the world. In the complex computing environment of CPS such modifications can be stealthier and undetectable. Under such circumstances, design of these malicious modifications, and eventually their detection, will be tied to the functionality and operation of the CPS. So it is imperative to address such threats by incorporating security awareness in the computing hardware design in a comprehensive manner taking the entire system into consideration. In this paper, we present a study in the influence of hardware Trojans on closed-loop systems, which form the basis of CPS, and establish threat models. Using these models, we perform a case study on a critical CPS application, gas pipeline based SCADA system. Through this process, we establish a completely virtual simulation platform along with a hardware-in-the-loop based simulation platform for implementation and testing.
Cyber physical system (CPS) is often deployed at safety-critical key infrastructures and fields, fault tolerance policies are extensively applied in CPS systems to improve its credibility; the same physical backup of hardware redundancy (SPB) technology is frequently used for its simple and reliable implementation. To resolve challenges faced with in simulation test of SPB-CPS, this paper dynamically determines the test resources matched with the CPS scale by using the adaptive allocation policies, establishes the hierarchical models and inter-layer message transmission mechanism. Meanwhile, the collaborative simulation time sequence push strategy and the node activity test mechanism based on the sliding window are designed in this paper to improve execution efficiency of the simulation test. In order to validate effectiveness of the method proposed in this paper, we successfully built up a fault-tolerant CPS simulation platform. Experiments showed that it can improve the SPB-CPS simulation test efficiency.
Cyber-physical systems (CPS) research leverages the expertise of researchers from multiple domains to engineer complex systems of interacting physical and computational components. An approach called co-simulation is often used in CPS conceptual design to integrate the specialized tools and simulators from each of these domains into a joint simulation for the evaluation of design decisions. Many co-simulation platforms are being developed to expedite CPS conceptualization and realization, but most use intrusive modeling and communication libraries that require researchers to either abandon their existing models or spend considerable effort to integrate them into the platform. A significant number of these co-simulation platforms use the High Level Architecture (HLA) standard that provides a rich set of services to facilitate distributed simulation. This paper introduces a simple gateway that can be readily implemented without co-simulation expertise to adapt existing models and research infrastructure for use in HLA. An open-source implementation of the gateway has been developed for the National Institute of Standards and Technology (NIST) co-simulation platform called the Universal CPS Environment for Federation (UCEF).
Secure logging is essential for the integrity and accountability of cyber-physical systems (CPS). To prevent modification of log files the integrity of data must be ensured. In this work, we propose a solution for secure event in cyberphysical systems logging based on the blockchain technology, by encapsulating event data in blocks. The proposed solution considers the real-time application constraints that are inherent in CPS monitoring and control functions by optimizing the heterogeneous resources governing blockchain computations. In doing so, the proposed blockchain mechanism manages to deliver events in hard-to-tamper ledger blocks that can be accessed and utilized by the various functions and components of the system. Performance analysis of the proposed solution is conducted through extensive simulation, demonstrating the effectiveness of the proposed approach in delivering blocks of events on time using the minimum computational resources.
CPS is generally complex to study, analyze, and design, as an important means to ensure the correctness of design and implementation of CPS system, simulation test is difficult to fully test, verify and evaluate the components or subsystems in the CPS system due to the inconsistent development progress of the com-ponents or subsystems in the CPS system. To address this prob-lem, we designed a hybrid P2P based collaborative simulation test framework composed of full physical nodes, hardware in the loop(HIL) nodes and full digital nodes to simulate the compo-nents or subsystems in the CPS system of different development progress, based on the framework, we then proposed collabora-tive simulation control strategy comprising sliding window based clock synchronization, dynamic adaptive time advancement and multi-priority task scheduling with preemptive time threshold. Experiments showed that the hybrid collaborative simulation testing method proposed in this paper can fully test CPS more effectively.
The disclosure of an important yet sensitive link may cause serious privacy crisis between two users of a social graph. Only deleting the sensitive link referred to as a target link which is often the attacked target of adversaries is not enough, because the adversarial link prediction can deeply forecast the existence of the missing target link. Thus, to defend some specific adversarial link prediction, a budget limited number of other non-target links should be optimally removed. We first propose a path-based dissimilarity function as the optimizing objective and prove that the greedy link deletion to preserve target link privacy referred to as the GLD2Privacy which has monotonicity and submodularity properties can achieve a near optimal solution. However, emulating all length limited paths between any pair of nodes for GLD2Privacy mechanism is impossible in large scale social graphs. Secondly, we propose a Walk2Privacy mechanism that uses self-avoiding random walk which can efficiently run in large scale graphs to sample the paths of given lengths between the two ends of any missing target link, and based on the sampled paths we select the alternative non-target links being deleted for privacy purpose. Finally, we compose experiments to demonstrate that the Walk2Privacy algorithm can remarkably reduce the time consumption and achieve a very near solution that is achieved by the GLD2Privacy.
Cloud Computing is the most promising paradigm in recent times. It offers a cost-efficient service to individual and industries. However, outsourcing sensitive data to entrusted Cloud servers presents a brake to Cloud migration. Consequently, improving the security of data access is the most critical task. As an efficient cryptographic technique, Ciphertext Policy Attribute Based Encryption(CP-ABE) develops and implements fine-grained, flexible and scalable access control model. However, existing CP-ABE based approaches suffer from some limitations namely revocation, data owner overhead and computational cost. In this paper, we propose a sliced revocable solution resolving the aforementioned issues abbreviated RS-CPABE. We applied splitting algorithm. We execute symmetric encryption with Advanced Encryption Standard (AES)in large data size and asymmetric encryption with CP-ABE in constant key length. We re-encrypt in case of revocation one single slice. To prove the proposed model, we expose security and performance evaluation.
Security challenges present in Machine-to-Machine Communication (M2M-C) and big data paradigm are fundamentally different from conventional network security challenges. In M2M-C paradigms, “Trust” is a vital constituent of security solutions that address security threats and for such solutions,it is important to quantify and evaluate the amount of trust in the information and its source. In this work, we focus on Machine Learning (ML) Based Trust (MLBT) evaluation model for detecting malicious activities in a vehicular Based M2M-C (VBM2M-C) network. In particular, we present an Entropy Based Feature Engineering (EBFE) coupled Extreme Gradient Boosting (XGBoost) model which is optimized with Binary Particle Swarm optimization technique. Based on three performance metrics, i.e., Accuracy Rate (AR), True Positive Rate (TPR), False Positive Rate (FPR), the effectiveness of the proposed method is evaluated in comparison to the state-of-the-art ensemble models, such as XGBoost and Random Forest. The simulation results demonstrates the superiority of the proposed model with approximately 10% improvement in accuracy, TPR and FPR, with reference to the attacker density of 30% compared with the start-of-the-art algorithms.
The internet of things (IoT) is the popular wireless network for data collection applications. The IoT networks are deployed in dense or sparse architectures, out of which the dense networks are vastly popular as these are capable of gathering the huge volumes of data. The collected data is analyzed using the historical or continuous analytical systems, which uses the back testing or time-series analytics to observe the desired patterns from the target data. The lost or bad interval data always carries the high probability to misguide the analysis reports. The data is lost due to a variety of reasons, out of which the most popular ones are associated with the node failures and connectivity holes, which occurs due to physical damage, software malfunctioning, blackhole/wormhole attacks, route poisoning, etc. In this paper, the work is carried on the new routing scheme for the IoTs to avoid the connectivity holes, which analyzes the activity of wireless nodes and takes the appropriate actions when required.
With the increasing interest in studying Automated Driving System (ADS)-equipped vehicles through simulation, there is a growing need for comprehensive and agile middleware to provide novel Virtual Analysis (VA) functions of ADS-equipped vehicles towards enabling a reliable representation for pre-deployment test. The National Institute of Standards and Technology (NIST) Universal Cyber-physical systems Environment for Federation (UCEF) is such a VA environment. It provides Application Programming Interfaces (APIs) capable of ensuring synchronized interactions across multiple simulation platforms such as LabVIEW, OMNeT++, Ricardo IGNITE, and Internet of Things (IoT) platforms. UCEF can aid engineers and researchers in understanding the impact of different constraints associated with complex cyber-physical systems (CPS). In this work UCEF is used to produce a simulated Operational Domain Design (ODD) for ADS-equipped vehicles where control (drive cycle/speed pattern), sensing (obstacle detection, traffic signs and lights), and threats (unusual signals, hacked sources) are represented as UCEF federates to simulate a drive cycle and to feed it to vehicle dynamics simulators (e.g. OpenModelica or Ricardo IGNITE) through the Functional Mock-up Interface (FMI). In this way we can subject the vehicle to a wide range of scenarios, collect data on the resulting interactions, and analyze those interactions using metrics to understand trustworthiness impact. Trustworthiness is defined here as in the NIST Framework for Cyber-Physical Systems, and is comprised of system reliability, resiliency, safety, security, and privacy. The goal of this work is to provide an example of an experimental design strategy using Fractional Factorial Design for statistically assessing the most important safety metrics in ADS-equipped vehicles.
Statistics suggests, proceeding towards IoT generation, is increasing IoT devices at a drastic rate. This will be very challenging for our present-day network infrastructure to manage, this much of data. This may risk, both security and traffic collapsing. We have proposed an infrastructure with Fog Computing. The Fog layer consists two layers, using the concepts of Service oriented Architecture (SOA) and the Agent based composition model which ensures the traffic usage reduction. In order to have a robust and secured system, we have modified the Fog based agent model by replacing the SOA with secured Named Data Network (NDN) protocol. Knowing the fact that NDN has the caching layer, we are combining NDN and with Fog, as it can overcome the forwarding strategy limitation and memory constraints of NDN by the Agent Society, in the Middle layer along with Trust management.
Cloud service has the computing characteristics of self-organizing strain on demand, which is prone to failure or loss of responsibility in its extensive application. In the prediction or accountability of this, the modeling of cloud service structure becomes an insurmountable priority. This paper reviews the modeling of cloud service network architecture. It mainly includes: Firstly, the research status of cloud service structure modeling is analyzed and reviewed. Secondly, the classification of time-varying structure of cloud services and the classification of time-varying structure modeling methods are summarized as a whole. Thirdly, it points out the existing problems. Finally, for cloud service accountability, research approach of time-varying structure modeling is proposed.