Visible to the public Biblio

Filters: Keyword is Web attacks  [Clear All Filters]
2022-06-14
Zuech, Richard, Hancock, John, Khoshgoftaar, Taghi M..  2021.  Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :30–37.
We introduce the novel concept of feature popularity with three different web attacks and big data from the CSE-CIC-IDS2018 dataset: Brute Force, SQL Injection, and XSS web attacks. Feature popularity is based upon ensemble Feature Selection Techniques (FSTs) and allows us to more easily understand common important features between different cyberattacks, for two main reasons. First, feature popularity lists can be generated to provide an easy comprehension of important features across different attacks. Second, the Jaccard similarity metric can provide a quantitative score for how similar feature subsets are between different attacks. Both of these approaches not only provide more explainable and easier-to-understand models, but they can also reduce the complexity of implementing models in real-world systems. Four supervised learning-based FSTs are used to generate feature subsets for each of our three different web attack datasets, and then our feature popularity frameworks are applied. For these three web attacks, the XSS and SQL Injection feature subsets are the most similar per the Jaccard similarity. The most popular features across all three web attacks are: Flow\_Bytes\_s, FlowİAT\_Max, and Flow\_Packets\_s. While this introductory study is only a simple example using only three web attacks, this feature popularity concept can be easily extended, allowing an automated framework to more easily determine the most popular features across a very large number of attacks and features.
2021-05-13
Zhang, Yaqin, Ma, Duohe, Sun, Xiaoyan, Chen, Kai, Liu, Feng.  2020.  WGT: Thwarting Web Attacks Through Web Gene Tree-based Moving Target Defense. 2020 IEEE International Conference on Web Services (ICWS). :364–371.
Moving target defense (MTD) suggests a game-changing way of enhancing web security by increasing uncertainty and complexity for attackers. A good number of web MTD techniques have been investigated to counter various types of web attacks. However, in most MTD techniques, only fixed attributes of the attack surface are shifted, leaving the rest exploitable by the attackers. Currently, there are few mechanisms to support the whole attack surface movement and solve the partial coverage problem, where only a fraction of the possible attributes shift in the whole attack surface. To address this issue, this paper proposes a Web Gene Tree (WGT) based MTD mechanism. The key point is to extract all potential exploitable key attributes related to vulnerabilities as web genes, and mutate them using various MTD techniques to withstand various attacks. Experimental results indicate that, by randomly shifting web genes and diversely inserting deceptive ones, the proposed WGT mechanism outperforms other existing schemes and can significantly improve the security of web applications.
2019-08-05
Maggi, Federico, Balduzzi, Marco, Flores, Ryan, Gu, Lion, Ciancaglini, Vincenzo.  2018.  Investigating Web Defacement Campaigns at Large. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :443–456.
Website defacement is the practice of altering the web pages of a website after its compromise. The altered pages, calleddeface pages, can negatively affect the reputation and business of the victim site. Previous research has focused primarily on detection, rather than exploring the defacement phenomenon in depth. While investigating several defacements, we observed that the artifacts left by the defacers allow an expert analyst to investigate the actors' modus operandi and social structure, and expand from the single deface page to a group of related defacements (i.e., acampaign ). However, manually performing such analysis on millions of incidents is tedious, and poses scalability challenges. From these observations, we propose an automated approach that efficiently builds intelligence information out of raw deface pages. Our approach streamlines the analysts job by automatically recognizing defacement campaigns, and assigning meaningful textual labels to them. Applied to a comprehensive dataset of 13 million defacement records, from Jan. 1998 to Sept. 2016, our approach allowed us to conduct the first large-scale measurement on web defacement campaigns. In addition, our approach is meant to be adopted operationally by analysts to identify live campaigns on the field. We go beyond confirming anecdotal evidence. We analyze the social structure of modern defacers, which includes lone individuals as well as actors that cooperate with each others, or with teams, which evolve over time and dominate the scene. We conclude by drawing a parallel between the time line of World-shaping events and defacement campaigns, representing the evolution of the interests and orientation of modern defacers.
2019-04-05
Calzavara, Stefano, Focardi, Riccardo, Squarcina, Marco, Tempesta, Mauro.  2018.  Surviving the Web: A Journey into Web Session Security. Companion Proceedings of the The Web Conference 2018. :451-455.
We survey the most common attacks against web sessions, i.e., attacks which target honest web browser users establishing an authenticated session with a trusted web application. We then review existing security solutions which prevent or mitigate the different attacks, by evaluating them along four different axes: protection, usability, compatibility and ease of deployment. Based on this survey, we identify five guidelines that, to different extents, have been taken into account by the designers of the different proposals we reviewed. We believe that these guidelines can be helpful for the development of innovative solutions approaching web security in a more systematic and comprehensive way.
2019-01-16
Jia, Z., Cui, X., Liu, Q., Wang, X., Liu, C..  2018.  Micro-Honeypot: Using Browser Fingerprinting to Track Attackers. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :197–204.
Web attacks have proliferated across the whole Internet in recent years. To protect websites, security vendors and researchers collect attack information using web honeypots. However, web attackers can hide themselves by using stepping stones (e.g., VPN, encrypted proxy) or anonymous networks (e.g., Tor network). Conventional web honeypots lack an effective way to gather information about an attacker's identity, which raises a big obstacle for cybercrime traceability and forensics. Traditional forensics methods are based on traffic analysis; it requires that defenders gain access to the entire network. It is not suitable for honeypots. In this paper, we present the design, implementation, and deployment of the Micro-Honeypot, which aims to use the browser fingerprinting technique to track a web attacker. Traditional honeypot lure attackers and records attacker's activity. Micro-Honeypot is deployed in a honeypot. It will run and gather identity information when an attacker visits the honeypot. Our preliminary results show that Micro-Honeypot could collect more information and track attackers although they might have used proxies or anonymous networks to hide themselves.
2015-05-06
Goseva-Popstojanova, K., Dimitrijevikj, A..  2014.  Distinguishing between Web Attacks and Vulnerability Scans Based on Behavioral Characteristics. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :42-48.

The number of vulnerabilities and reported attacks on Web systems are showing increasing trends, which clearly illustrate the need for better understanding of malicious cyber activities. In this paper we use clustering to classify attacker activities aimed at Web systems. The empirical analysis is based on four datasets, each in duration of several months, collected by high-interaction honey pots. The results show that behavioral clustering analysis can be used to distinguish between attack sessions and vulnerability scan sessions. However, the performance heavily depends on the dataset. Furthermore, the results show that attacks differ from vulnerability scans in a small number of features (i.e., session characteristics). Specifically, for each dataset, the best feature selection method (in terms of the high probability of detection and low probability of false alarm) selects only three features and results into three to four clusters, significantly improving the performance of clustering compared to the case when all features are used. The best subset of features and the extent of the improvement, however, also depend on the dataset.