Visible to the public Biblio

Filters: Keyword is Web systems  [Clear All Filters]
2020-02-18
Tung Hoang, Xuan, Dung Bui, Ngoc.  2019.  An Enhanced Semantic-Based Cache Replacement Algorithm for Web Systems. 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF). :1–6.

As Web traffics is increasing on the Internet, caching solutions for Web systems are becoming more important since they can greatly expand system scalability. An important part of a caching solution is cache replacement policy, which is responsible for selecting victim items that should be removed in order to make space for new objects. Typical replacement policies used in practice only take advantage of temporal reference locality by removing the least recently/frequently requested items from the cache. Although those policies work well in memory or filesystem cache, they are inefficient for Web systems since they do not exploit semantic relationship between Web items. This paper presents a semantic-aware caching policy that can be used in Web systems to enhance scalability. The proposed caching mechanism defines semantic distance from a web page to a set of pivot pages and use the semantic distances as a metric for choosing victims. Also, it use a function-based metric that combines access frequency and cache item size for tie-breaking. Our simulations show that out enhancements outperform traditional methods in terms of hit rate, which can be useful for websites with many small and similar-in-size web objects.

2015-05-06
Goseva-Popstojanova, K., Dimitrijevikj, A..  2014.  Distinguishing between Web Attacks and Vulnerability Scans Based on Behavioral Characteristics. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :42-48.

The number of vulnerabilities and reported attacks on Web systems are showing increasing trends, which clearly illustrate the need for better understanding of malicious cyber activities. In this paper we use clustering to classify attacker activities aimed at Web systems. The empirical analysis is based on four datasets, each in duration of several months, collected by high-interaction honey pots. The results show that behavioral clustering analysis can be used to distinguish between attack sessions and vulnerability scan sessions. However, the performance heavily depends on the dataset. Furthermore, the results show that attacks differ from vulnerability scans in a small number of features (i.e., session characteristics). Specifically, for each dataset, the best feature selection method (in terms of the high probability of detection and low probability of false alarm) selects only three features and results into three to four clusters, significantly improving the performance of clustering compared to the case when all features are used. The best subset of features and the extent of the improvement, however, also depend on the dataset.