Biblio
Cyber-Physical Systems (CPS) represent a fundamental link between information technology (IT) systems and the devices that control industrial production and maintain critical infrastructure services that support our modern world. Increasingly, the interconnections among CPS and IT systems have created exploitable security vulnerabilities due to a number of factors, including a legacy of weak information security applications on CPS and the tendency of CPS operators to prioritize operational availability at the expense of integrity and confidentiality. As a result, CPS are subject to a number of threats from cyber attackers and cyber-physical attackers, including denial of service and even attacks against the integrity of the data in the system. The effects of these attacks extend beyond mere loss of data or the inability to access information system services. Attacks against CPS can cause physical damage in the real world. This paper reviews the challenges of providing information assurance services for CPS that operate critical infrastructure systems and industrial control systems. These methods are thorough measures to close integrity and confidentiality gaps in CPS and processes to highlight the security risks that remain. This paper also outlines approaches to reduce the overhead and complexity for security methods, as well as examine novel approaches, including covert communications channels, to increase CPS security.
This paper proposes a new network-based cyber intrusion detection system (NIDS) using multicast messages in substation automation systems (SASs). The proposed network-based intrusion detection system monitors anomalies and malicious activities of multicast messages based on IEC 61850, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Value (SV). NIDS detects anomalies and intrusions that violate predefined security rules using a specification-based algorithm. The performance test has been conducted for different cyber intrusion scenarios (e.g., packet modification, replay and denial-of-service attacks) using a cyber security testbed. The IEEE 39-bus system model has been used for testing of the proposed intrusion detection method for simultaneous cyber attacks. The false negative ratio (FNR) is the number of misclassified abnormal packets divided by the total number of abnormal packets. The results demonstrate that the proposed NIDS achieves a low fault negative rate.