Visible to the public Biblio

Filters: Keyword is Microprocessors  [Clear All Filters]
2022-05-19
Ali, Nora A., Shokry, Beatrice, Rumman, Mahmoud H., ElSayed, Hany M., Amer, Hassanein H., Elsoudani, Magdy S..  2021.  Low-overhead Solutions For Preventing Information Leakage Due To Hardware Trojan Horses. 2021 16th International Conference on Computer Engineering and Systems (ICCES). :1–5.
The utilization of Third-party modules is very common nowadays. Hence, combating Hardware Trojans affecting the applications' functionality and data security becomes inevitably essential. This paper focuses on the detection/masking of Hardware Trojans' undesirable effects concerned with spying and information leakage due to the growing care about applications' data confidentiality. It is assumed here that the Trojan-infected system consists mainly of a Microprocessor module (MP) followed by an encryption module and then a Medium Access Control (MAC) module. Also, the system can be application-specific integrated circuit (ASIC) based or Field Programmable Gate Arrays (FPGA) based. A general solution, including encryption, CRC encoder/decoder, and zero padding modules, is presented to handle such Trojans. Special cases are then discussed carefully to prove that Trojans will be detected/masked with a corresponding overhead that depends on the Trojan's location, and the system's need for encryption. An implementation of the CRC encoder along with the zero padding module is carried out on an Altera Cyclone IV E FPGA to illustrate the extra resource utilization required by such a system, given that it is already using encryption.
Ponugoti, Kushal K., Srinivasan, Sudarshan K., Mathure, Nimish.  2021.  Formal Verification Approach to Detect Always-On Denial of Service Trojans in Pipelined Circuits. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1–6.
Always-On Denial of Service (DoS) Trojans with power drain payload can be disastrous in systems where on-chip power resources are limited. These Trojans are designed so that they have no impact on system behavior and hence, harder to detect. A formal verification method is presented to detect sequential always-on DoS Trojans in pipelined circuits and pipelined microprocessors. Since the method is proof-based, it provides a 100% accurate classification of sequential Trojan components. Another benefit of the approach is that it does not require a reference model, which is one of the requirements of many Trojan detection techniques (often a bottleneck to practical application). The efficiency and scalability of the proposed method have been evaluated on 36 benchmark circuits. The most complex of these benchmarks has as many as 135,898 gates. Detection times are very efficient with a 100% rate of detection, i.e., all Trojan sequential elements were detected and all non-trojan sequential elements were classified as such.
2022-03-14
Narang, Anuraag, Venu, Balaji, Khursheed, Saqib, Harrod, Peter.  2021.  An Exploration of Microprocessor Self-Test Optimisation Based On Safe Faults. 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). :1—6.
Microprocessor software test libraries (STLs) must provide maximum fault coverage with minimum overhead. Pruning safe faults, which cannot cause errors in the output of the processor, from the fault list can increase fault coverage without adding test overhead. Applying more application-specific constraints can lead to the identification of more safe faults, and some such constraints are yet to be explored. This work explores the use of signal combination-based constraints alongside well-known constant signal-based constraints for identifying safe faults. Also, for the first time, information on safe faults is utilised during test compaction in order to further minimise test overhead. Results for an OpenRISC processor design show up to 2.33% improvement in fault coverage with the use of the proposed constraints. In one test program, a code segment contributing only to the coverage of safe faults is identified, with its removal providing a 1.09 % code size reduction on top of existing compaction techniques. The results may vary for a larger and more complex commercial design with greater scope for redundant logic. This work explores the use of signal combination-based constraints alongside well-known constant signal-based constraints for identifying safe faults. Also, for the first time, information on safe faults is utilised during test compaction in order to further minimise test overhead. Results for an OpenRISC processor design show up to 2.33% improvement in fault coverage with the use of the proposed constraints. In one test program, a code segment contributing only to the coverage of safe faults is identified, with its removal providing a 1.09 % code size reduction on top of existing compaction techniques. The results may vary for a larger and more complex commercial design with greater scope for redundant logic.
2021-06-02
Gursoy, M. Emre, Rajasekar, Vivekanand, Liu, Ling.  2020.  Utility-Optimized Synthesis of Differentially Private Location Traces. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :30—39.
Differentially private location trace synthesis (DPLTS) has recently emerged as a solution to protect mobile users' privacy while enabling the analysis and sharing of their location traces. A key challenge in DPLTS is to best preserve the utility in location trace datasets, which is non-trivial considering the high dimensionality, complexity and heterogeneity of datasets, as well as the diverse types and notions of utility. In this paper, we present OptaTrace: a utility-optimized and targeted approach to DPLTS. Given a real trace dataset D, the differential privacy parameter ε controlling the strength of privacy protection, and the utility/error metric Err of interest; OptaTrace uses Bayesian optimization to optimize DPLTS such that the output error (measured in terms of given metric Err) is minimized while ε-differential privacy is satisfied. In addition, OptaTrace introduces a utility module that contains several built-in error metrics for utility benchmarking and for choosing Err, as well as a front-end web interface for accessible and interactive DPLTS service. Experiments show that OptaTrace's optimized output can yield substantial utility improvement and error reduction compared to previous work.
2021-02-23
Adat, V., Parsamehr, R., Politis, I., Tselios, C., Kotsopoulos, S..  2020.  Malicious user identification scheme for network coding enabled small cell environment. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Reliable communication over the wireless network with high throughput is a major target for the next generation communication technologies. Network coding can significantly improve the throughput efficiency of the network in a cooperative environment. The small cell technology and device to device communication make network coding an ideal candidate for improved performance in the fifth generation of communication networks. However, the security concerns associated with network coding needs to be addressed before any practical implementations. Pollution attacks are considered one of the most threatening attacks in the network coding environment. Although there are different integrity schemes to detect polluted packets, identifying the exact adversary in a network coding environment is a less addressed challenge. This paper proposes a scheme for identifying and locating adversaries in a dense, network coding enabled environment of mobile nodes. It also discusses a non-repudiation protocol that will prevent adversaries from deceiving the network.
2020-10-06
Ibrahim, Romani Farid.  2019.  Mobile Transaction Processing for a Distributed War Environment. 2019 14th International Conference on Computer Science Education (ICCSE). :856—862.

The battlefield environment differs from the natural environment in terms of irregular communications and the possibility of destroying communication and medical units by enemy forces. Information that can be collected in a war environment by soldiers is important information and must reach top-level commanders in time for timely decisions making. Also, ambulance staff in the battlefield need to enter the data of injured soldiers after the first aid, so that the information is available for the field hospital staff to prepare the needs for incoming injured soldiers.In this research, we propose two transaction techniques to handle these issues and use different concurrency control protocols, depending on the nature of the transaction and not a one concurrency control protocol for all types of transactions. Message transaction technique is used to collect valuable data from the battlefield by soldiers and allows top-level commanders to view it according to their permissions by logging into the system, to help them make timely decisions. In addition, use the capabilities of DBMS tools to organize data and generate reports, as well as for future analysis. Medical service unit transactional workflow technique is used to provides medical information to the medical authorities about the injured soldiers and their status, which helps them to prepare the required needs before the wounded soldiers arrive at the hospitals. Both techniques handle the disconnection problem during transaction processing.In our approach, the transaction consists of four phases, reading, editing, validation, and writing phases, and its processing is based on the optimistic concurrency control protocol, and the rules of actionability that describe how a transaction behaves if a value-change is occurred on one or more of its attributes during its processing time by other transactions.

2020-08-17
Vliegen, Jo, Rabbani, Md Masoom, Conti, Mauro, Mentens, Nele.  2019.  SACHa: Self-Attestation of Configurable Hardware. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :746–751.
Device attestation is a procedure to verify whether an embedded device is running the intended application code. This way, protection against both physical attacks and remote attacks on the embedded software is aimed for. With the wide adoption of Field-Programmable Gate Arrays or FPGAs, hardware also became configurable, and hence susceptible to attacks (just like software). In addition, an upcoming trend for hardware-based attestation is the use of configurable FPGA hardware. Therefore, in order to attest a whole system that makes use of FPGAs, the status of both the software and the hardware needs to be verified, without the availability of a tamper-resistant hardware module.In this paper, we propose a solution in which a prover core on the FPGA performs an attestation of the entire FPGA, including a self-attestation. This way, the FPGA can be used as a tamper-resistant hardware module to perform hardware-based attestation of a processor, resulting in a protection of the entire hardware/software system against malicious code updates.
2020-02-17
Broomandi, Fateme, Ghasemi, Abdorasoul.  2019.  An Improved Cooperative Cell Outage Detection in Self-Healing Het Nets Using Optimal Cooperative Range. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1956–1960.
Heterogeneous Networks (Het Nets) are introduced to fulfill the increasing demands of wireless communications. To be manageable, it is expected that these networks are self-organized and in particular, self-healing to detect and relief faults autonomously. In the Cooperative Cell Outage Detection (COD), the Macro-Base Station (MBS) and a group of Femto-Base Stations (FBSs) in a specific range are cooperatively communicating to find out if each FBS is working properly or not. In this paper, we discuss the impacts of the cooperation range on the detection delay and accuracy and then conclude that there is an optimal amount for cooperation range which maximizes detection accuracy. We then derive the optimal cooperative range that improves the detection accuracy by using network parameters such as FBS's transmission power, noise power, shadowing fading factor, and path-loss exponent and investigate the impacts of these parameters on the optimal cooperative range. The simulation results show the optimal cooperative range that we proposed maximizes the detection accuracy.
2020-02-10
Tenentes, Vasileios, Das, Shidhartha, Rossi, Daniele, Al-Hashimi, Bashir M..  2019.  Run-time Detection and Mitigation of Power-Noise Viruses. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :275–280.
Power-noise viruses can be used as denial-of-service attacks by causing voltage emergencies in multi-core microprocessors that may lead to data corruptions and system crashes. In this paper, we present a run-time system for detecting and mitigating power-noise viruses. We present voltage noise data from a power-noise virus and benchmarks collected from an Arm multi-core processor, and we observe that the frequency of voltage emergencies is dramatically increasing during the execution of power-noise attacks. Based on this observation, we propose a regression model that allows for a run-time estimation of the severity of voltage emergencies by monitoring the frequency of voltage emergencies and the operating frequency of the microprocessor. For mitigating the problem, during the execution of critical tasks that require protection, we propose a system which periodically evaluates the severity of voltage emergencies and adapts its operating frequency in order to honour a predefined severity constraint. We demonstrate the efficacy of the proposed run-time system.
2019-10-07
Agrawal, R., Stokes, J. W., Selvaraj, K., Marinescu, M..  2019.  Attention in Recurrent Neural Networks for Ransomware Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3222–3226.

Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.

2018-05-24
Zhongchao, W., Ligang, H., Baojun, T., Wensi, W., Jinhui, W..  2017.  Design and Verification of a Novel IoT Node Protocol. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). :201–205.

The IoT node works mostly in a specific scenario, and executes the fixed program. In order to make it suitable for more scenarios, this paper introduces a kind of the IoT node, which can change program at any time. And this node has intelligent and dynamic reconfigurable features. Then, a transport protocol is proposed. It enables this node to work in different scenarios and perform corresponding program. Finally, we use Verilog to design and FPGA to verify. The result shows that this protocol is feasible. It also offers a novel way of the IoT.

2017-02-27
Lokesh, M. R., Kumaraswamy, Y. S..  2015.  Healing process towards resiliency in cyber-physical system: A modified danger theory based artifical immune recogization2 algorithm approach. 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS). :226–232.

Healing Process is a major role in developing resiliency in cyber-physical system where the environment is diverse in nature. Cyber-physical system is modelled with Multi Agent Paradigm and biological inspired Danger Theory based-Artificial Immune Recognization2 Algorithm Methodology towards developing healing process. The Proposed methodology is implemented in a simulation environment and percentage of Convergence rates shown in achieving accuracy in the healing process to resiliency in cyber-physical system environment is shown.

2015-05-06
Tsoutsos, N.G., Maniatakos, M..  2014.  Fabrication Attacks: Zero-Overhead Malicious Modifications Enabling Modern Microprocessor Privilege Escalation. Emerging Topics in Computing, IEEE Transactions on. 2:81-93.

The wide deployment of general purpose and embedded microprocessors has emphasized the need for defenses against cyber-attacks. Due to the globalized supply chain, however, there are several stages where a processor can be maliciously modified. The most promising stage, and the hardest during which to inject the hardware trojan, is the fabrication stage. As modern microprocessor chips are characterized by very dense, billion-transistor designs, such attacks must be very carefully crafted. In this paper, we demonstrate zero overhead malicious modifications on both high-performance and embedded microprocessors. These hardware trojans enable privilege escalation through execution of an instruction stream that excites the necessary conditions to make the modification appear. The minimal footprint, however, comes at the cost of a small window of attack opportunities. Experimental results show that malicious users can gain escalated privileges within a few million clock cycles. In addition, no system crashes were reported during normal operation, rendering the modifications transparent to the end user.