Biblio
Controller Area Network (CAN) is the main bus network that connects electronic control units in automobiles. Although CAN protocols have been revised to improve the vehicle safety, the security weaknesses of CAN have not been fully addressed. Security threats on automobiles might be from external wireless communication or from internal malicious CAN nodes mounted on the CAN bus. Despite of various threat sources, the security weakness of CAN is the root of security problems. Due to the limited computation power and storage capacity on each CAN node, there is a lack of hardware-efficient protection methods for the CAN system without losing the compatibility to CAN protocols. To save the cost and maintain the compatibility, we propose to exploit the built-in CAN fault confinement mechanism to detect the masquerade attacks originated from the malicious CAN devices on the CAN bus. Simulation results show that our method achieves the attack misdetection rate at the order of 10-5 and reduces the encryption latency by up to 68% over the complete frame encryption method.
This paper presents a middleware solution to secure data and network in the e-healthcare system. The e-Healthcare Systems are a primary concern due to the easiest deployment area accessibility of the sensor devices. Furthermore, they are often interacting closely in cooperation with the physical environment and the surrounding people, where such exposure increases security vulnerabilities in cases of improperly managed security of the information sharing among different healthcare organizations. Hence, healthcare-specific security standards such as authentication, data integrity, system security and internet security are used to ensure security and privacy of patients' information. This paper discusses security threats on e-Healthcare Systems where an attacker can access both data and network using masquerade attack Moreover, an efficient and cost effective approach middleware solution is discussed for the delivery of secure services.