Visible to the public Biblio

Filters: Keyword is electronic health records  [Clear All Filters]
2021-01-18
Pattanayak, S., Ludwig, S. A..  2019.  Improving Data Privacy Using Fuzzy Logic and Autoencoder Neural Network. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Data privacy is a very important problem to address while sharing data among multiple organizations and has become very crucial in the health sectors since multiple organizations such as hospitals are storing data of patients in the form of Electronic Health Records. Stored data is used with other organizations or research analysts to improve the health care of patients. However, the data records contain sensitive information such as age, sex, and date of birth of the patients. Revealing sensitive data can cause a privacy breach of the individuals. This has triggered research that has led to many different privacy preserving techniques being introduced. Thus, we designed a technique that not only encrypts / hides the sensitive information but also sends the data to different organizations securely. To encrypt sensitive data we use different fuzzy logic membership functions. We then use an autoencoder neural network to send the modified data. The output data of the autoencoder can then be used by different organizations for research analysis.
2020-11-09
Farhadi, M., Haddad, H., Shahriar, H..  2019.  Compliance Checking of Open Source EHR Applications for HIPAA and ONC Security and Privacy Requirements. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:704–713.
Electronic Health Record (EHR) applications are digital versions of paper-based patient's health information. They are increasingly adopted to improved quality in healthcare, such as convenient access to histories of patient medication and clinic visits, easier follow up of patient treatment plans, and precise medical decision-making process. EHR applications are guided by measures of the Health Insurance Portability and Accountability Act (HIPAA) to ensure confidentiality, integrity, and availability. Furthermore, Office of the National Coordinator (ONC) for Health Information Technology (HIT) certification criteria for usability of EHRs. A compliance checking approach attempts to identify whether or not an adopted EHR application meets the security and privacy criteria. There is no study in the literature to understand whether traditional static code analysis-based vulnerability discovered can assist in compliance checking of regulatory requirements of HIPAA and ONC. This paper attempts to address this issue. We identify security and privacy requirements for HIPAA technical requirements, and identify a subset of ONC criteria related to security and privacy, and then evaluate EHR applications for security vulnerabilities. Finally propose mitigation of security issues towards better compliance and to help practitioners reuse open source tools towards certification compliance.
2020-09-28
Fimiani, Gianluca.  2018.  Supporting Privacy in a Cloud-Based Health Information System by Means of Fuzzy Conditional Identity-Based Proxy Re-encryption (FCI-PRE). 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :569–572.
Healthcare is traditionally a data-intensive domain, where physicians needs complete and updated anamnesis of their patients to take the best medical decisions. Dematerialization of the medical documents and the consequent health information systems to share electronic health records among healthcare providers are paving the way to an effective solution to this issue. However, they are also paving the way of non-negligible privacy issues that are limiting the full application of these technologies. Encryption is a valuable means to resolve such issues, however the current schemes are not able to cope with all the needs and challenges that the cloud-based sharing of electronic health records imposes. In this work we have investigated the use of a novel scheme where encryption is combined with biometric authentication, and defines a preliminary solution.
2020-08-28
Yau, Yiu Chung, Khethavath, Praveen, Figueroa, Jose A..  2019.  Secure Pattern-Based Data Sensitivity Framework for Big Data in Healthcare. 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science Engineering (BCD). :65—70.
With the exponential growth in the usage of electronic medical records (EMR), the amount of data generated by the healthcare industry has too increased exponentially. These large amounts of data, known as “Big Data” is mostly unstructured. Special big data analytics methods are required to process the information and retrieve information which is meaningful. As patient information in hospitals and other healthcare facilities become increasingly electronic, Big Data technologies are needed now more than ever to manage and understand this data. In addition, this information tends to be quite sensitive and needs a highly secure environment. However, current security algorithms are hard to be implemented because it would take a huge amount of time and resources. Security protocols in Big data are also not adequate in protecting sensitive information in the healthcare. As a result, the healthcare data is both heterogeneous and insecure. As a solution we propose the Secure Pattern-Based Data Sensitivity Framework (PBDSF), that uses machine learning mechanisms to identify the common set of attributes of patient data, data frequency, various patterns of codes used to identify specific conditions to secure sensitive information. The framework uses Hadoop and is built on Hadoop Distributed File System (HDFS) as a basis for our clusters of machines to process Big Data, and perform tasks such as identifying sensitive information in a huge amount of data and encrypting data that are identified to be sensitive.
2020-06-01
Bhargavi, US., Gundibail, Shivaprasad, Manjunath, KN., Renuka, A..  2019.  Security of Medical Big Data Images using Decoy Technique. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :310–314.

Tele-radiology is a technology that helps in bringing the communication between the radiologist, patients and healthcare units situated at distant places. This involves exchange of medical centric data. The medical data may be stored as Electronic Health Records (EHR). These EHRs contain X-Rays, CT scans, MRI reports. Hundreds of scans across multiple radiology centers lead to medical big data (MBD). Healthcare Cloud can be used to handle MBD. Since lack of security to EHRs can cause havoc in medical IT, healthcare cloud must be secure. It should ensure secure sharing and storage of EHRs. This paper proposes the application of decoy technique to provide security to EHRs. The EHRs have the risk of internal attacks and external intrusion. This work addresses and handles internal attacks. It also involves study on honey-pots and intrusion detection techniques. Further it identifies the possibility of an intrusion and alerts the administrator. Also the details of intrusions are logged.

2020-05-18
Chen, Long.  2019.  Assertion Detection in Clinical Natural Language Processing: A Knowledge-Poor Machine Learning Approach. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :37–40.
Natural language processing (NLP) have been recently used to extract clinical information from free text in Electronic Health Record (EHR). In clinical NLP one challenge is that the meaning of clinical entities is heavily affected by assertion modifiers such as negation, uncertain, hypothetical, experiencer and so on. Incorrect assertion assignment could cause inaccurate diagnosis of patients' condition or negatively influence following study like disease modeling. Thus, clinical NLP systems which can detect assertion status of given target medical findings (e.g. disease, symptom) in clinical context are highly demanded. Here in this work, we propose a deep-learning system based on word embedding, RNN and attention mechanism (more specifically: Attention-based Bidirectional Long Short-Term Memory networks) for assertion detection in clinical notes. Unlike previous state-of-art methods which require knowledge input or feature engineering, our system is a knowledge poor machine learning system and can be easily extended or transferred to other domains. The evaluation of our system on public benchmarking corpora demonstrates that a knowledge poor deep-learning system can also achieve high performance for detecting negation and assertions comparing to state-of-the-art systems.
2020-04-13
Avianto, Hana, Ogi, Dion.  2019.  Design of Electronic Medical Record Security Policy in Hospital Management Information System (SIMRS) in XYZ Hospital. 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI). :163–167.
Electronic Medical Record (EMR) is a medical record management system. EMR contains personal data of patients that is critical. The critical nature of medical records is the reason for the necessity to develop security policies as guidelines for EMR in SIMRS in XZY Hospital. In this study, analysis and risk assessment conducted to EMR management at SIMRS in XZY Hospital. Based on this study, the security of SIMRS in XZY Hospital is categorized as high. Security and Privacy Control mapping based on NIST SP800-53 rev 5 obtained 57 security controls related to privacy aspects as control options to protect EMR in SIMRS in XZY Hospital. The policy designing was done using The Triangle framework for Policy Analysis. The analysis obtained from the policy decisions of the head of XYZ Hospital. The contents of the security policy are provisions on the implementation of security policies of EMR, outlined of 17 controls were selected.
2020-04-03
Lachner, Clemens, Rausch, Thomas, Dustdar, Schahram.  2019.  Context-Aware Enforcement of Privacy Policies in Edge Computing. 2019 IEEE International Congress on Big Data (BigDataCongress). :1—6.
Privacy is a fundamental concern that confronts systems dealing with sensitive data. The lack of robust solutions for defining and enforcing privacy measures continues to hinder the general acceptance and adoption of these systems. Edge computing has been recognized as a key enabler for privacy enhanced applications, and has opened new opportunities. In this paper, we propose a novel privacy model based on context-aware edge computing. Our model leverages the context of data to make decisions about how these data need to be processed and managed to achieve privacy. Based on a scenario from the eHealth domain, we show how our generalized model can be used to implement and enact complex domain-specific privacy policies. We illustrate our approach by constructing real world use cases involving a mobile Electronic Health Record that interacts with, and in different environments.
2020-03-30
Mao, Huajian, Chi, Chenyang, Yu, Jinghui, Yang, Peixiang, Qian, Cheng, Zhao, Dongsheng.  2019.  QRStream: A Secure and Convenient Method for Text Healthcare Data Transferring. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). :3458–3462.
With the increasing of health awareness, the users become more and more interested in their daily health information and healthcare activities results from healthcare organizations. They always try to collect them together for better usage. Traditionally, the healthcare data is always delivered by paper format from the healthcare organizations, and it is not easy and convenient for data usage and management. They would have to translate these data on paper to digital version which would probably introduce mistakes into the data. It would be necessary if there is a secure and convenient method for electronic health data transferring between the users and the healthcare organizations. However, for the security and privacy problems, almost no healthcare organization provides a stable and full service for health data delivery. In this paper, we propose a secure and convenient method, QRStream, which splits original health data and loads them onto QR code frame streaming for the data transferring. The results shows that QRStream can transfer text health data smoothly with an acceptable performance, for example, transferring 10K data in 10 seconds.
2020-02-10
Cetin, Cagri, Goldgof, Dmitry, Ligatti, Jay.  2019.  SQL-Identifier Injection Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :151–159.
This paper defines a class of SQL-injection attacks that are based on injecting identifiers, such as table and column names, into SQL statements. An automated analysis of GitHub shows that 15.7% of 120,412 posted Java source files contain code vulnerable to SQL-Identifier Injection Attacks (SQL-IDIAs). We have manually verified that some of the 18,939 Java files identified during the automated analysis are indeed vulnerable to SQL-ID IAs, including deployed Electronic Medical Record software for which SQL-IDIAs enable discovery of confidential patient information. Although prepared statements are the standard defense against SQL injection attacks, existing prepared-statement APIs do not protect against SQL-IDIAs. This paper therefore proposes and evaluates an extended prepared-statement API to protect against SQL-IDIAs.
2019-02-13
Joshi, M., Joshi, K., Finin, T..  2018.  Attribute Based Encryption for Secure Access to Cloud Based EHR Systems. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :932–935.
Medical organizations find it challenging to adopt cloud-based electronic medical records services, due to the risk of data breaches and the resulting compromise of patient data. Existing authorization models follow a patient centric approach for EHR management where the responsibility of authorizing data access is handled at the patients' end. This however creates a significant overhead for the patient who has to authorize every access of their health record. This is not practical given the multiple personnel involved in providing care and that at times the patient may not be in a state to provide this authorization. Hence there is a need of developing a proper authorization delegation mechanism for safe, secure and easy cloud-based EHR management. We have developed a novel, centralized, attribute based authorization mechanism that uses Attribute Based Encryption (ABE) and allows for delegated secure access of patient records. This mechanism transfers the service management overhead from the patient to the medical organization and allows easy delegation of cloud-based EHR's access authority to the medical providers. In this paper, we describe this novel ABE approach as well as the prototype system that we have created to illustrate it.
2018-11-14
Magyar, G..  2017.  Blockchain: Solving the Privacy and Research Availability Tradeoff for EHR Data: A New Disruptive Technology in Health Data Management. 2017 IEEE 30th Neumann Colloquium (NC). :000135–000140.

A blockchain powered Health information ecosystem can solve a frequently discussed problem of the lifelong recorded patient health data, which seriously could hurdle the privacy of the patients and the growing data hunger of the research and policy maker institutions. On one side the general availability of the data is vital in emergency situations and supports heavily the different research, population health management and development activities, on the other side using the same data can lead to serious social and ethical problems caused by malicious actors. Currently, the regulation of the privacy data varies all over the world, however underlying principles are always defensive and protective towards patient privacy against general availability. The protective principles cause a defensive, data hiding attitude of the health system developers to avoid breaching the overall law regulations. It makes the policy makers and different - primarily drug - developers to find ways to treat data such a way that lead to ethical and political debates. In our paper we introduce how the blockchain technology can help solving the problem of secure data storing and ensuring data availability at the same time. We use the basic principles of the American HIPAA regulation, which defines the public availability criteria of health data, however the different local regulations may differ significantly. Blockchain's decentralized, intermediary-free, cryptographically secured attributes offer a new way of storing patient data securely and at the same time publicly available in a regulated way, where a well-designed distributed peer-to-peer network incentivize the smooth operation of a full-featured EHR system.

2017-12-12
Rezaeibagha, F., Mu, Y..  2017.  Access Control Policy Combination from Similarity Analysis for Secure Privacy-Preserved EHR Systems. 2017 IEEE Trustcom/BigDataSE/ICESS. :386–393.

In distributed systems, there is often a need to combine the heterogeneous access control policies to offer more comprehensive services to users in the local or national level. A large scale healthcare system is usually distributed in a computer network and might require sophisticated access control policies to protect the system. Therefore, the need for integrating the electronic healthcare systems might be important to provide a comprehensive care for patients while preserving patients' privacy and data security. However, there are major impediments in healthcare systems concerning not well-defined and flexible access control policy implementations, hindering the progress towards secure integrated systems. In this paper, we introduce an access control policy combination framework for EHR systems that preserves patients' privacy and ensures data security. We achieve our goal through an access control mechanism which handles multiple access control policies through a similarity analysis phase. In that phase, we evaluate different XACML policies to decide whether or not a policy combination is applicable. We have provided a case study to show the applicability of our proposed approach based on XACML. Our study results can be applied to the electronic health record (EHR) access control policy, which fosters interoperability and scalability among healthcare providers while preserving patients' privacy and data security. 

2015-05-06
Potdar, M.S., Manekar, A.S., Kadu, R.D..  2014.  Android #x0022;Health-Dr. #x0022; Application for Synchronous Information Sharing. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :265-269.

Android "Health-DR." is innovative idea for ambulatory appliances. In rapid developing technology, we are providing "Health-DR." application for the insurance agent, dispensary, patients, physician, annals management (security) for annals. So principally, the ample of record are maintain in to the hospitals. The application just needs to be installed in the customer site with IT environment. Main purpose of our application is to provide the healthy environment to the patient. Our cream focus is on the "Health-DR." application meet to the patient regiment. For the personal use of member, we provide authentication service strategy for "Health-DR." application. Prospective strategy includes: Professional Authentications (User Authentication) by doctor to the patient, actuary and dispensary. Remote access is available to the medical annals, doctor affability and patient affability. "Health-DR." provides expertness anytime and anywhere. The application is middleware to isolate the information from affability management, client discovery and transit of database. Annotations of records are kept in the bibliography. Mainly, this paper focuses on the conversion of E-Health application with flexible surroundings.
 

Gazzarata, R., Vergari, F., Cinotti, T.S., Giacomini, M..  2014.  A Standardized SOA for Clinical Data Interchange in a Cardiac Telemonitoring Environment. Biomedical and Health Informatics, IEEE Journal of. 18:1764-1774.

Care of chronic cardiac patients requires information interchange between patients' homes, clinical environments, and the electronic health record. Standards are emerging to support clinical information collection, exchange and management and to overcome information fragmentation and actors delocalization. Heterogeneity of information sources at patients' homes calls for open solutions to collect and accommodate multidomain information, including environmental data. Based on the experience gained in a European Research Program, this paper presents an integrated and open approach for clinical data interchange in cardiac telemonitoring applications. This interchange is supported by the use of standards following the indications provided by the national authorities of the countries involved. Taking into account the requirements provided by the medical staff involved in the project, the authors designed and implemented a prototypal middleware, based on a service-oriented architecture approach, to give a structured and robust tool to congestive heart failure patients for their personalized telemonitoring. The middleware is represented by a health record management service, whose interface is compliant to the healthcare services specification project Retrieve, Locate and Update Service standard (Level 0), which allows communication between the agents involved through the exchange of Clinical Document Architecture Release 2 documents. Three performance tests were carried out and showed that the prototype completely fulfilled all requirements indicated by the medical staff; however, certain aspects, such as authentication, security and scalability, should be deeply analyzed within a future engineering phase.
 

Ochian, A., Suciu, G., Fratu, O., Voicu, C., Suciu, V..  2014.  An overview of cloud middleware services for interconnection of healthcare platforms. Communications (COMM), 2014 10th International Conference on. :1-4.

Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.