Biblio
The Radio Frequency Identification (RFID), as one of the key technologies in sensing layer of the Internet of Things (IoT) framework, has increasingly been deployed in a wide variety of application domains. But the reliability of RFID is still a great concern. This article introduces the group management of RFID passwords method, come up with by YUICHI KOBAYASHI and other researchers, which aimed to reduce the risk of privacy disclosure. But for reason that the password and pass key in the method, which are set to protect the ID, doesn't change and the ID is transmitted directly in the unsafe channel, it causes serious vulnerabilities that may be used by resourceful adversary. Thus, we proposed an improved method by using the random number to encrypt the password and switching the password into the temporally valid information. Besides, the protocol encrypts the ID during to avoid the direct transmission situation significantly increases the reliability.
Applications such as fleet management and logistics, emergency response, public security and surveillance or mobile workforce management use geo-positioning and mobile networks as means of enabling real-time monitoring, communication and collaboration among a possibly large set of mobile nodes. The majority of those systems require real-time tracking of mobile nodes (e.g. vehicles, people or mobile robots), reliable communication to/from the nodes, as well as group communication among the mobile nodes. In this paper we describe a distributed middleware with focus on management of context-defined groups of mobile nodes, and group communication with large sets of nodes. We also present a prototype Fleet Tracking and Management system based on our middleware, give an example of how context-specific group communication can enhance the node's mutual awareness, and show initial performance results that indicate small overhead and latency of the group communication and management.