Visible to the public Biblio

Filters: Keyword is telemedicine  [Clear All Filters]
2023-04-14
Deepa, N R, Sivamangai, N M.  2022.  A State-Of-Art Model of Encrypting Medical Image Using DNA Cryptography and Hybrid Chaos Map - 2d Zaslavaski Map: Review. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :190–195.

E-health, smart health and telemedicine are examples of sophisticated healthcare systems. For end-to-end communication, these systems rely on digital medical information. Although this digitizing saves much time, it is open source. As a result, hackers could potentially manipulate the digital medical image as it is being transmitted. It is harder to diagnose an actual disease from a modified digital medical image in medical diagnostics. As a result, ensuring the security and confidentiality of clinical images, as well as reducing the computing time of encryption algorithms, appear to be critical problems for research groups. Conventional approaches are insufficient to ensure high-level medical image security. So this review paper focuses on depicting advanced methods like DNA cryptography and Chaotic Map as advanced techniques that could potentially help in encrypting the digital image at an effective level. This review acknowledges the key accomplishments expressed in the encrypting measures and their success indicators of qualitative and quantitative measurement. This research study also explores the key findings and reasons for finding the lessons learned as a roadmap for impending findings.

ISSN: 2644-1802

2023-01-20
Yao, Jiming, Wu, Peng, Chen, Duanyun, Wang, Wei, Fang, Youxu.  2022.  A security scheme for network slicing selection based on Pohlig-Hellman algorithm in smart grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:906—910.
5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.
2022-06-30
Pradeep, Diya Achu, Harsha, A, Jacob, Jaison.  2021.  Image Encryption Using Chaotic Map And Related Analysis. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—5.
The superior breadth of data transmission through the internet is rapidly increasing in the current scenario. The information in the form of images is really critical in the fields of Banking, Military, Medicine, etc, especially, in the medical field as people are unable to travel to different locations, they rely on telemedicine facilities available. All these fields are equally vulnerable to intruders. So, to prevent such an act, encryption of these data in the form of images can be done using chaos encryption. Chaos Encryption has its long way in the field of Secure Communication. Their Unique features offer much more security than any conventional algorithms. There are many simple chaotic maps that could be used for encryption. In this paper, at first Henon chaotic maps is used for the encryption purpose. The comparison of the algorithm with conventional algorithms is also done. Finally, a security analysis for proving the robustness of the algorithm is carried out. Also, different existing and some new versions are compared so as to check whether a new combination could produce a better result. The simulation results show that the proposed algorithm is robust and simple to be used for this application. Also, found a new combination of the map to be used for the application.
2022-05-24
Safitri, Cutifa, Nguyen, Quang Ngoc, Deo Lumoindong, Christoforus Williem, Ayu, Media Anugerah, Mantoro, Teddy.  2021.  Advanced Forwarding Strategy Towards Delay Tolerant Information-Centric Networking. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED). :1–5.
Information-Centric Networking (ICN) is among the promising architecture that can drive the need and versatility towards the future generation (xG) needs. In the future, support for network communication relies on the area of telemedicine, autonomous vehicles, and disaster recovery. In the disaster recovery case, there is a high possibility where the communication path is severed. Multicast communication and DTN-friendly route algorithm are becoming suitable options to send a packet message to get a faster response and to see any of the nodes available for service, this approach could give burden to the core network. Also, during disaster cases, many people would like to communicate, receive help, and find family members. Flooding the already disturbed/severed network will further reduce communication performance efficiency even further. Thus, this study takes into consideration prioritization factors to allow networks to process and delivering priority content. For this purpose, the proposed technique introduces the Routable Prefix Identifier (RP-ID) that takes into account the prioritization factor to enable optimization in Delay Tolerant ICN communication.
2022-04-18
Babenko, Liudmila, Shumilin, Alexander, Alekseev, Dmitry.  2021.  Development of the Algorithm to Ensure the Protection of Confidential Data in Cloud Medical Information System. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1–4.
The main purpose to ensure the security for confidential medical data is to develop and implement the architecture of a medical cloud system, for storage, systematization, and processing of survey results (for example EEG) jointly with an algorithm for ensuring the protection of confidential data based on a fully homomorphic cryptosystem. The most optimal algorithm based on the test results (analysis of the time of encryption, decryption, addition, multiplication, the ratio of the signal-to-noise of the ciphertext to the open text), has been selected between two potential applicants for using (BFV and CKKS schemes). As a result, the CKKS scheme demonstrates maximal effectiveness in the context of the criticality of the requirements for an important level of security.
2021-03-29
Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

2021-03-09
Suresh, V., Rajashree, S..  2020.  Establishing Authenticity for DICOM images using ECC algorithm. 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII). :1—4.

Preserving medical data is of utmost importance to stake holders. There are not many laws in India about preservation, usability of patient records. When data is transmitted across the globe there are chances of data getting tampered intentionally or accidentally. Tampered data loses its authenticity for diagnostic purpose, research and various other reasons. This paper proposes an authenticity based ECDSA algorithm by signature verification to identify the tampering of medical image files and alerts by the rules of authenticity. The algorithm can be used by researchers, doctors or any other educated person in order to maintain the authenticity of the record. Presently it is applied on medical related image files like DICOM. However, it can support any other medical related image files and still preserve the authenticity.

2021-01-28
Sammoud, A., Chalouf, M. A., Hamdi, O., Montavont, N., Bouallegue, A..  2020.  A secure three-factor authentication and biometrics-based key agreement scheme for TMIS with user anonymity. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1916—1921.

E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.

2020-10-19
Umamageswari, A., Jebasheela, A., Ruby, D., Leo Vijilious, M.A..  2019.  Enhancing Security in Medical Image Informatics with Various Attacks. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–8.
The objective of the work is to provide security to the medical images by embedding medical data (EPR-Electronic Patient Record) along with the image to reduce the bandwidth during communication. Reversible watermarking and Digital Signature itself will provide high security. This application mainly used in tele-surgery (Medical Expert to Medical Expert Communication). Only the authorized medical experts can explore the patients' image because of Kerberos. The proposed work is mainly to restrict the unauthorized access to get the patients'data. So medical image authentication may be achieved without biometric recognition such as finger prints and eye stamps etc. The EPR itself contains the patients' entire history, so after the extraction process Medical expert can able to identify the patient and also the disease information. In future we can embed the EPR inside the medical image after it got encrypted to achieve more security. To increase the authentication, Medical Expert biometric information can be embedded inside the image in the future. Experiments were conducted using more than 500 (512 × 512) image archives in various modalities from the NIH (National Institute of Health) and Aycan sample digital images downloaded from the internet and tests are conducted. Almost in all images with greater than 15000 bits embedding size and got PSNR of 60.4 dB to 78.9 dB with low distortion in received image because of compression, not because of watermarking and average NPCR (Number of Pixels Change Rate) is 98.9 %.
2020-09-04
Karim, Hassan, Rawat, Danda.  2019.  A Trusted Bluetooth Performance Evaluation Model for Brain Computer Interfaces. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :47—52.
Bluetooth enables excellent mobility in Brain Computer Interface (BCI) research and other use cases including ambulatory care, telemedicine, fitness tracking and mindfulness training. Although significant research exists for an all-encompassing BCI performance rating, almost all the literature addresses performance in terms of brain state or brain function classification accuracy. For the few published experiments that address BCI hardware performance, they too, focused on improving classification accuracy. This paper explores some of the more recent studies and proposes a trusted performance rating for BCI applications based on the enhanced privacy, yet reduced bandwidth needs of mobile EEG-based BCI applications. This paper proposes a set of Bluetooth operating parameters required to meet the performance, usability and privacy requirements of reliable and secure mobile neuro-feedback applications. It presents a rating model, "Trusted Mobile BCI", based on those operating parameters, and validated the model with studies that leveraged mobile BCI technology.
2020-01-21
Jimenez, Jaime Ibarra, Jahankhani, Hamid.  2019.  ``Privacy by Design'' Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-Based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.

Future that IoT has to enhance the productivity on healthcare applications.

2019-08-05
Jimenez, J. I., Jahankhani, H..  2019.  “Privacy by Design” Governance Framework to Achieve Privacy Assurance of Personal Health Information (PHI) Processed by IoT-based Telemedicine Devices and Applications Within Healthcare Services. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :212–212.

Future that IoT has to enhance the productivity on healthcare applications.

2015-05-06
Gazzarata, R., Vergari, F., Cinotti, T.S., Giacomini, M..  2014.  A Standardized SOA for Clinical Data Interchange in a Cardiac Telemonitoring Environment. Biomedical and Health Informatics, IEEE Journal of. 18:1764-1774.

Care of chronic cardiac patients requires information interchange between patients' homes, clinical environments, and the electronic health record. Standards are emerging to support clinical information collection, exchange and management and to overcome information fragmentation and actors delocalization. Heterogeneity of information sources at patients' homes calls for open solutions to collect and accommodate multidomain information, including environmental data. Based on the experience gained in a European Research Program, this paper presents an integrated and open approach for clinical data interchange in cardiac telemonitoring applications. This interchange is supported by the use of standards following the indications provided by the national authorities of the countries involved. Taking into account the requirements provided by the medical staff involved in the project, the authors designed and implemented a prototypal middleware, based on a service-oriented architecture approach, to give a structured and robust tool to congestive heart failure patients for their personalized telemonitoring. The middleware is represented by a health record management service, whose interface is compliant to the healthcare services specification project Retrieve, Locate and Update Service standard (Level 0), which allows communication between the agents involved through the exchange of Clinical Document Architecture Release 2 documents. Three performance tests were carried out and showed that the prototype completely fulfilled all requirements indicated by the medical staff; however, certain aspects, such as authentication, security and scalability, should be deeply analyzed within a future engineering phase.