Visible to the public Biblio

Filters: Keyword is Data-driven approach  [Clear All Filters]
2018-03-19
Wang, A., Mohaisen, A., Chen, S..  2017.  An Adversary-Centric Behavior Modeling of DDoS Attacks. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1126–1136.

Distributed Denial of Service (DDoS) attacks are some of the most persistent threats on the Internet today. The evolution of DDoS attacks calls for an in-depth analysis of those attacks. A better understanding of the attackers' behavior can provide insights to unveil patterns and strategies utilized by attackers. The prior art on the attackers' behavior analysis often falls in two aspects: it assumes that adversaries are static, and makes certain simplifying assumptions on their behavior, which often are not supported by real attack data. In this paper, we take a data-driven approach to designing and validating three DDoS attack models from temporal (e.g., attack magnitudes), spatial (e.g., attacker origin), and spatiotemporal (e.g., attack inter-launching time) perspectives. We design these models based on the analysis of traces consisting of more than 50,000 verified DDoS attacks from industrial mitigation operations. Each model is also validated by testing its effectiveness in accurately predicting future DDoS attacks. Comparisons against simple intuitive models further show that our models can more accurately capture the essential features of DDoS attacks.

2017-12-20
Schulz, A., Kotson, M., Meiners, C., Meunier, T., O’Gwynn, D., Trepagnier, P., Weller-Fahy, D..  2017.  Active Dependency Mapping: A Data-Driven Approach to Mapping Dependencies in Distributed Systems. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :84–91.

We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.

2015-05-06
El-Koujok, M., Benammar, M., Meskin, N., Al-Naemi, M., Langari, R..  2014.  Multiple Sensor Fault Diagnosis by Evolving Data-driven Approach. Inf. Sci.. 259:346–358.

Sensors are indispensable components of modern plants and processes and their reliability is vital to ensure reliable and safe operation of complex systems. In this paper, the problem of design and development of a data-driven Multiple Sensor Fault Detection and Isolation (MSFDI) algorithm for nonlinear processes is investigated. The proposed scheme is based on an evolving multi-Takagi Sugeno framework in which each sensor output is estimated using a model derived from the available input/output measurement data. Our proposed MSFDI algorithm is applied to Continuous-Flow Stirred-Tank Reactor (CFSTR). Simulation results demonstrate and validate the performance capabilities of our proposed MSFDI algorithm.