Biblio
To avoid being discovered by the defenders of a target, APT attackers are using encrypted communication to hide communication features, using code obfuscation and file-less technology to avoid malicious code being easily reversed and leaking out its internal working mechanism, and using misleading content to conceal their identities. And it is clearly ineffective to detect APT attacks by relying on one single technology. All of these tough situation make information security and privacy protection face increasingly serious threats. In this paper, through a deep study of Cyber Kill Chain behaviors, combining with intelligence analysis technology, we transform APT detecting problem to be a measurable mathematical problem through weighted Bayesian classification with correction factor so as to detect APTs and perceive threats. In the solution, we adopted intelligence acquisition technology from massive data, and TFIDF algorithm for calculate attack behavior's weight. Also we designed a correction factor to improve the Markov Weighted Bayesian Model with multiple behaviors being detected by modifying the value of the probability of APT attack.
With the rapid development of the information technology, more and more high-speed networks came out. The 4G LTE network as a recently emerging network has gradually entered the mainstream of the communication network. This paper proposed an effective content-based information filtering based on the 4G LTE high-speed network by combing the content-based filter and traditional simple filter. Firstly, raw information is pre-processed by five-tuple filter. Secondly, we determine the topics and character of the source data by key nearest neighbor text classification after minimum-risk Bayesian classification. Finally, the improved AdaBoost algorithm achieves the four-level content-based information filtering. The experiments reveal that the effective information filtering method can be applied to the network security, big data analysis and other fields. It has high research value and market value.
A key characteristic of simultaneous fault diagnosis is that the features extracted from the original patterns are strongly dependent. This paper proposes a new model of Bayesian classifier, which removes the fundamental assumption of naive Bayesian, i.e., the independence among features. In our model, the optimal bandwidth selection is applied to estimate the class-conditional probability density function (p.d.f.), which is the essential part of joint p.d.f. estimation. Three well-known indices, i.e., classification accuracy, area under ROC curve, and probability mean square error, are used to measure the performance of our model in simultaneous fault diagnosis. Simulations show that our model is significantly superior to the traditional ones when the dependence exists among features.