Biblio
Today, by widely spread of information technology (IT) usage, E-commerce security and its related legislations are very critical issue in information technology and court law. There is a consensus that security matters are the significant foundation of e-commerce, electronic consumers, and firms' privacy. While e-commerce networks need a policy for security privacy, they should be prepared for a simple consumer friendly infrastructure. Hence it is necessary to review the theoretical models for revision. In This theory review, we embody a number of former articles that cover security of e-commerce and legislation ambit at the individual level by assessing five criteria. Whether data of articles provide an effective strategy for secure-protection challenges in e-commerce and e-consumers. Whether provisions clearly remedy precedents or they need to flourish? This paper focuses on analyzing the former discussion regarding e-commerce security and existence legislation toward cyber-crime activity of e-commerce the article also purports recommendation for subsequent research which is indicate that through secure factors of e-commerce we are able to fill the vacuum of its legislation.
The amount of personal information contributed by individuals to digital repositories such as social network sites has grown substantially. The existence of this data offers unprecedented opportunities for data analytics research in various domains of societal importance including medicine and public policy. The results of these analyses can be considered a public good which benefits data contributors as well as individuals who are not making their data available. At the same time, the release of personal information carries perceived and actual privacy risks to the contributors. Our research addresses this problem area. In our work, we study a game-theoretic model in which individuals take control over participation in data analytics projects in two ways: 1) individuals can contribute data at a self-chosen level of precision, and 2) individuals can decide whether they want to contribute at all (or not). From the analyst's perspective, we investigate to which degree the research analyst has flexibility to set requirements for data precision, so that individuals are still willing to contribute to the project, and the quality of the estimation improves. We study this tradeoffs scenario for populations of homogeneous and heterogeneous individuals, and determine Nash equilibrium that reflect the optimal level of participation and precision of contributions. We further prove that the analyst can substantially increase the accuracy of the analysis by imposing a lower bound on the precision of the data that users can reveal.
In this paper, we study the problem of privacy information leakage in a smart grid. The privacy risk is assumed to be caused by an unauthorized binary hypothesis testing of the consumer's behaviour based on the smart meter readings of energy supplies from the energy provider. Another energy supplies are produced by an alternative energy source. A controller equipped with an energy storage device manages the energy inflows to satisfy the energy demand of the consumer. We study the optimal energy control strategy which minimizes the asymptotic exponential decay rate of the minimum Type II error probability in the unauthorized hypothesis testing to suppress the privacy risk. Our study shows that the cardinality of the energy supplies from the energy provider for the optimal control strategy is no more than two. This result implies a simple objective of the optimal energy control strategy. When additional side information is available for the adversary, the optimal control strategy and privacy risk are compared with the case of leaking smart meter readings to the adversary only.
Cloud Computing has emerged as a paradigm to deliver on demand resources to facilitate the customers with access to their infrastructure and applications as per their requirements on a subscription basis. An exponential increase in the number of cloud services in the past few years provides more options for customers to choose from. To assist customers in selecting a most trustworthy cloud provider, a unified trust evaluation framework is needed. Trust helps in the estimation of competency of a resource provider in completing a task thus enabling users to select the best resources in the heterogeneous cloud infrastructure. Trust estimates obtained using the AHP process exhibit a deviation for parameters that are not in direct proportion to the contributing attributes. Such deviation can be removed using the Fuzzy AHP model. In this paper, a Fuzzy AHP based hierarchical trust model has been proposed to rate the service providers and their various plans for infrastructure as a service.
Sharing cyber security data across organizational boundaries brings both privacy risks in the exposure of personal information and data, and organizational risk in disclosing internal information. These risks occur as information leaks in network traffic or logs, and also in queries made across organizations. They are also complicated by the trade-offs in privacy preservation and utility present in anonymization to manage disclosure. In this paper, we define three principles that guide sharing security information across organizations: Least Disclosure, Qualitative Evaluation, and Forward Progress. We then discuss engineering approaches that apply these principles to a distributed security system. Application of these principles can reduce the risk of data exposure and help manage trust requirements for data sharing, helping to meet our goal of balancing privacy, organizational risk, and the ability to better respond to security with shared information.
The data processing capabilities of MapReduce systems pioneered with the on-demand scalability of cloud computing have enabled the Big Data revolution. However, the data controllers/owners worried about the privacy and accountability impact of storing their data in the cloud infrastructures as the existing cloud computing solutions provide very limited control on the underlying systems. The intuitive approach - encrypting data before uploading to the cloud - is not applicable to MapReduce computation as the data analytics tasks are ad-hoc defined in the MapReduce environment using general programming languages (e.g, Java) and homomorphic encryption methods that can scale to big data do not exist. In this paper, we address the challenges of determining and detecting unauthorized access to data stored in MapReduce based cloud environments. To this end, we introduce alarm raising honeypots distributed over the data that are not accessed by the authorized MapReduce jobs, but only by the attackers and/or unauthorized users. Our analysis shows that unauthorized data accesses can be detected with reasonable performance in MapReduce based cloud environments.
Information Technology experts cite security and privacy concerns as the major challenges in the adoption of cloud computing. On Platform-as-a-Service (PaaS) clouds, customers are faced with challenges of selecting service providers and evaluating security implementations based on their security needs and requirements. This study aims to enable cloud customers the ability to quantify their security requirements in order to identify critical areas in PaaS cloud architectures were security provisions offered by CSPs could be assessed. With the use of an adaptive security mapping matrix, the study uses a quantitative approach to presents findings of numeric data that shows critical architectures within the PaaS environment where security can be evaluated and security controls assessed to meet these security requirements. The matrix can be adapted across different types of PaaS cloud models based on individual security requirements and service level objectives identified by PaaS cloud customers.
Language vector space models (VSMs) have recently proven to be effective across a variety of tasks. In VSMs, each word in a corpus is represented as a real-valued vector. These vectors can be used as features in many applications in machine learning and natural language processing. In this paper, we study the effect of vector space representations in cyber security. In particular, we consider a passive traffic analysis attack (Website Fingerprinting) that threatens users' navigation privacy on the web. By using anonymous communication, Internet users (such as online activists) may wish to hide the destination of web pages they access for different reasons such as avoiding tyrant governments. Traditional website fingerprinting studies collect packets from the users' network and extract features that are used by machine learning techniques to reveal the destination of certain web pages. In this work, we propose the packet to vector (P2V) approach where we model website fingerprinting attack using word vector representations. We show how the suggested model outperforms previous website fingerprinting works.
Searchable encryption is a new developing information security technique and it enables users to search over encrypted data through keywords without having to decrypt it at first. In the last decade, many researchers are engaging in the field of searchable encryption and have proposed a series of efficient search schemes over encrypted cloud data. It is the time to survey this field to conclude a comprehensive framework by analyzing individual contributions. This paper focuses on the searchable encryption schemes in cloud. We firstly summarize the general model and threat model in searchable encryption schemes, and then present the privacy-preserving issues in these schemes. In addition, we compare the efficiency and security between semantic search and preferred search in detail. At last, some open issues and research challenges in the future are proposed.
So far, cloud storage has been accepted by an increasing number of people, which is not a fresh notion any more. It brings cloud users a lot of conveniences, such as the relief of local storage and location independent access. Nevertheless, the correctness and completeness as well as the privacy of outsourced data are what worry could users. As a result, most people are unwilling to store data in the cloud, in case that the sensitive information concerning something important is disclosed. Only when people feel worry-free, can they accept cloud storage more easily. Certainly, many experts have taken this problem into consideration, and tried to solve it. In this paper, we survey the solutions to the problems concerning auditing in cloud computing and give a comparison of them. The methods and performances as well as the pros and cons are discussed for the state-of-the-art auditing protocols.
Strength of security and privacy of any cryptographic mechanisms that use random numbers require that the random numbers generated have two important properties namely 1. Uniform distribution and 2. Independence. With the growth of Internet many devices are connected to Internet that host sensors. One idea proposed is to use sensor data as seed for Random Number Generator (RNG) since sensors measure the physical phenomena that exhibit randomness over time. The random numbers generated from sensor data can be used for cryptographic algorithms in Internet activities. These sensor data also pose weaknesses where sensors may be under adversarial control that may lead to generating expected random sequence which breaks the security and privacy. This paper proposes a wash-rinse-spin approach to process the raw sensor data that increases randomness in the seed value. The generated sequences from two sensors are combined by Decimation method to improve unpredictability. This makes the sensor data to be more secure in generating random numbers preventing attackers from knowing the random sequence through adversarial control.
Privacy analysis is essential in the society. Data privacy preservation for access control, guaranteed service in wireless sensor networks are important parts. In programs' verification, we not only consider about these kinds of safety and liveness properties but some security policies like noninterference, and observational determinism which have been proposed as hyper properties. Fairness is widely applied in verification for concurrent systems, wireless sensor networks and embedded systems. This paper studies verification and analysis for proving security-relevant properties and hyper properties by proposing deductive proof rules under fairness requirements (constraints).
Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.
The threats of smartphone security are mostly from the privacy disclosure and malicious chargeback software which deducting expenses abnormally. They exploit the vulnerabilities of previous permission mechanism to attack to mobile phones, and what's more, it might call hardware to spy privacy invisibly in the background. As the existing Android operating system doesn't support users the monitoring and auditing of system resources, a dynamic supervisory mechanism of process behavior based on Dalvik VM is proposed to solve this problem. The existing android system framework layer and application layer are modified and extended, and special underlying services of system are used to realize a dynamic supervisory on the process behavior of Dalvik VM. Via this mechanism, each process on the system resources and the behavior of each app process can be monitored and analyzed in real-time. It reduces the security threats in system level and positions that which process is using the system resource. It achieves the detection and interception before the occurrence or the moment of behavior so that it protects the private information, important data and sensitive behavior of system security. Extensive experiments have demonstrated the accuracy, effectiveness, and robustness of our approach.
Today's systems produce a rapidly exploding amount of data, and the data further derives more data, forming a complex data propagation network that we call the data's lineage. There are many reasons that users want systems to forget certain data including its lineage. From a privacy perspective, users who become concerned with new privacy risks of a system often want the system to forget their data and lineage. From a security perspective, if an attacker pollutes an anomaly detector by injecting manually crafted data into the training data set, the detector must forget the injected data to regain security. From a usability perspective, a user can remove noise and incorrect entries so that a recommendation engine gives useful recommendations. Therefore, we envision forgetting systems, capable of forgetting certain data and their lineages, completely and quickly. This paper focuses on making learning systems forget, the process of which we call machine unlearning, or simply unlearning. We present a general, efficient unlearning approach by transforming learning algorithms used by a system into a summation form. To forget a training data sample, our approach simply updates a small number of summations – asymptotically faster than retraining from scratch. Our approach is general, because the summation form is from the statistical query learning in which many machine learning algorithms can be implemented. Our approach also applies to all stages of machine learning, including feature selection and modeling. Our evaluation, on four diverse learning systems and real-world workloads, shows that our approach is general, effective, fast, and easy to use.
Hash based biometric template protection schemes (BTPS), such as fuzzy commitment, fuzzy vault, and secure sketch, address the privacy leakage concern on the plain biometric template storage in a database through using cryptographic hash calculation for template verification. However, cryptographic hashes have only computational security whose being cracked shall leak the biometric feature in these BTPS; and furthermore, existing BTPS are rarely able to detect during a verification process whether a probe template has been leaked from the database or not (i.e., being used by an imposter or a genuine user). In this paper we tailor the "honeywords" idea, which was proposed to detect the hashed password cracking, to enable the detectability of biometric template database leakage. However, unlike passwords, biometric features encoded in a template cannot be renewed after being cracked and thus not straightforwardly able to be protected by the honeyword idea. To enable the honeyword idea on biometrics, diversifiability (and thus renewability) is required on the biometric features. We propose to use BTPS for his purpose in this paper and present a machine learning based protected template generation protocol to ensure the best anonymity of the generated sugar template (from a user's genuine biometric feature) among other honey ones (from synthesized biometric features).
Cloud Computing is one of the large and essential environment now a days to work for the storage collection and privacy preserve to that data. Cloud data security is most important and major concern for the client while use of the cloud services provided by the different service providers. There can be some major security concern and conflicts between the client and the service provider. To get out from those issues, a third party auditor uses as an auditor for assurance of data in the environment. Storage systems for the cloud has many fundamental challenges still today. All basic as well critical challenges among which storage space and security is generally the top concern in the cloud environment. To give the appropriate security issues we have proposed third party authentication system. The cloud not only for the simplified data storage but also secure data acquisition in cloud environment. At last we have perform different security analysis as well performance analysis. It give the results that proposed scheme has significant increases in efficiency for maintaining highly secure data storage and acquisition. The proposed method also helps to minimize the cost in environment and also increases communication efficiency in the cloud environment.
In data analysis, it is always a tough task to strike the balance between the privacy and the applicability of the data. Due to the demand for individual privacy, the data are being more or less obscured before being released or outsourced to avoid possible privacy leakage. This process is so called de-identification. To discuss a de-identification policy, the most important two aspects should be the re-identification risk and the information loss. In this paper, we introduce a novel policy searching method to efficiently find out proper de-identification policies according to acceptable re-identification risk while retaining the information resided in the data. With the UCI Machine Learning Repository as our real world dataset, the re-identification risk can therefore be able to reflect the true risk of the de-identified data under the de-identification policies. Moreover, using the proposed algorithm, one can then efficiently acquire policies with higher information entropy.
Online Social Networks exploit a lightweight process to identify their users so as to facilitate their fast adoption. However, such convenience comes at the price of making legitimate users subject to different threats created by fake accounts. Therefore, there is a crucial need to empower users with tools helping them in assigning a level of trust to whomever they interact with. To cope with this issue, in this paper we introduce a novel model, DIVa, that leverages on mining techniques to find correlations among user profile attributes. These correlations are discovered not from user population as a whole, but from individual communities, where the correlations are more pronounced. DIVa exploits a decentralized learning approach and ensures privacy preservation as each node in the OSN independently processes its local data and is required to know only its direct neighbors. Extensive experiments using real-world OSN datasets show that DIVa is able to extract fine-grained community-aware correlations among profile attributes with average improvements up to 50% than the global approach.
The new era of information communication and technology (ICT), everyone wants to store/share their Data or information in online media, like in cloud database, mobile database, grid database, drives etc. When the data is stored in online media the main problem is arises related to data is privacy because different types of hacker, attacker or crackers wants to disclose their private information as publically. Security is a continuous process of protecting the data or information from attacks. For securing that information from those kinds of unauthorized people we proposed and implement of one the technique based on the data modification concept with taking the iris database on weka tool. And this paper provides the high privacy in distributed clustered database environments.
With the growing observed success of big data use, many challenges appeared. Timeless, scalability and privacy are the main problems that researchers attempt to figure out. Privacy preserving is now a highly active domain of research, many works and concepts had seen the light within this theme. One of these concepts is the de-identification techniques. De-identification is a specific area that consists of finding and removing sensitive information either by replacing it, encrypting it or adding a noise to it using several techniques such as cryptography and data mining. In this report, we present a new model of de-identification of textual data using a specific Immune System algorithm known as CLONALG.
With the advancement of technology, the world has not only become a better place to live in but have also lost the privacy and security of shared data. Information in any form is never safe from the hands of unauthorized accessing individuals. Here, in our paper we propose an approach by which we can preserve data using visual cryptography. In this paper, two sixteen segment displayed text is broken into two shares that does not reveal any information about the original images. By this process we have obtained satisfactory results in statistical and structural testes.
The enormous size of video data of natural scene and objects is a practical threat to storage, transmission. The efficient handling of video data essentially requires compression for economic utilization of storage space, access time and the available network bandwidth of the public channel. In addition, the protection of important video is of utmost importance so as to save it from malicious intervention, attack or alteration by unauthorized users. Therefore, security and privacy has become an important issue. Since from past few years, number of researchers concentrate on how to develop efficient video encryption for secure video transmission, a large number of multimedia encryption schemes have been proposed in the literature like selective encryption, complete encryption and entropy coding based encryption. Among above three kinds of algorithms, they all remain some kind of shortcomings. In this paper, we have proposed a lightweight selective encryption algorithm for video conference which is based on efficient XOR operation and symmetric hierarchical encryption, successfully overcoming the weakness of complete encryption while offering a better security. The proposed algorithm guarantees security, fastness and error tolerance without increasing the video size.
In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.
Wireless security has been an active research area since the last decade. A lot of studies of wireless security use cryptographic tools, but traditional cryptographic tools are normally based on computational assumptions, which may turn out to be invalid in the future. Consequently, it is very desirable to build cryptographic tools that do not rely on computational assumptions. In this paper, we focus on a crucial cryptographic tool, namely 1-out-of-2 oblivious transfer. This tool plays a central role in cryptography because we can build a cryptographic protocol for any polynomial-time computable function using this tool. We present a novel 1-out-of-2 oblivious transfer protocol based on wireless channel characteristics, which does not rely on any computational assumption. We also illustrate the potential broad applications of this protocol by giving two applications, one on private communications and the other on privacy preserving password verification. We have fully implemented this protocol on wireless devices and conducted experiments in real environments to evaluate the protocol. Our experimental results demonstrate that it has reasonable efficiency.