Visible to the public Biblio

Filters: Keyword is Fractals  [Clear All Filters]
2021-09-21
Brezinski, Kenneth, Ferens, Ken.  2020.  Complexity-Based Convolutional Neural Network for Malware Classification. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :1–9.
Malware classification remains at the forefront of ongoing research as the prevalence of metamorphic malware introduces new challenges to anti-virus vendors and firms alike. One approach to malware classification is Static Analysis - a form of analysis which does not require malware to be executed before classification can be performed. For this reason, a lightweight classifier based on the features of a malware binary is preferred, with relatively low computational overhead. In this work a modified convolutional neural network (CNN) architecture was deployed which integrated a complexity-based evaluation based on box-counting. This was implemented by setting up max-pooling layers in parallel, and then extracting the fractal dimension using a polyscalar relationship based on the resolution of the measurement scale and the number of elements of a malware image covered in the measurement under consideration. To test the robustness and efficacy of our approach we trained and tested on over 9300 malware binaries from 25 unique malware families. This work was compared to other award-winning image recognition models, and results showed categorical accuracy in excess of 96.54%.
2021-03-04
Wang, L..  2020.  Trusted Connect Technology of Bioinformatics Authentication Cloud Platform Based on Point Set Topology Transformation Theory. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :151—154.
The bioinformatics features are collected by pattern recognition technology, and the digital coding and format conversion of the feature data are realized by using the theory of topological group transformation. Authentication and Signature based on Zero Knowledge Proof Technology can be used as the trusted credentials of cloud platform and cannot be forged, thus realizing trusted and secure access.
2018-03-19
Leonarduzzi, R., Abry, P., Jaffard, S., Wendt, H., Gournay, L., Kyriacopoulou, T., Martineau, C., Martinez, C..  2017.  P-Leader Multifractal Analysis for Text Type Identification. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4661–4665.

Among many research efforts devoted to automated art investigations, the problem of quantification of literary style remains current. Meanwhile, linguists and computer scientists have tried to sort out texts according to their types or authors. We use the recently-introduced p-leader multifractal formalism to analyze a corpus of novels written for adults and young adults, with the goal of assessing if a difference in style can be found. Our results agree with the interpretation that novels written for young adults largely follow conventions of the genre, whereas novels written for adults are less homogeneous.

2015-05-06
Voskuilen, G., Vijaykumar, T.N..  2014.  Fractal++: Closing the performance gap between fractal and conventional coherence. Computer Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on. :409-420.

Cache coherence protocol bugs can cause multicores to fail. Existing coherence verification approaches incur state explosion at small scales or require considerable human effort. As protocols' complexity and multicores' core counts increase, verification continues to be a challenge. Recently, researchers proposed fractal coherence which achieves scalable verification by enforcing observational equivalence between sub-systems in the coherence protocol. A larger sub-system is verified implicitly if a smaller sub-system has been verified. Unfortunately, fractal protocols suffer from two fundamental limitations: (1) indirect-communication: sub-systems cannot directly communicate and (2) partially-serial-invalidations: cores must be invalidated in a specific, serial order. These limitations disallow common performance optimizations used by conventional directory protocols: reply-forwarding where caches communicate directly and parallel invalidations. Therefore, fractal protocols lack performance scalability while directory protocols lack verification scalability. To enable both performance and verification scalability, we propose Fractal++ which employs a new class of protocol optimizations for verification-constrained architectures: decoupled-replies, contention-hints, and fully-parallel-fractal-invalidations. The first two optimizations allow reply-forwarding-like performance while the third optimization enables parallel invalidations in fractal protocols. Unlike conventional protocols, Fractal++ preserves observational equivalence and hence is scalably verifiable. In 32-core simulations of single- and four-socket systems, Fractal++ performs nearly as well as a directory protocol while providing scalable verifiability whereas the best-performing previous fractal protocol performs 8% on average and up to 26% worse with a single-socket and 12% on average and up to 34% worse with a longer-latency multi-socket system.