Visible to the public Biblio

Filters: Keyword is mobile security  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Abu Othman, Noor Ashitah, Norman, Azah Anir, Mat Kiah, Miss Laiha.  2021.  Information System Audit for Mobile Device Security Assessment. 2021 3rd International Cyber Resilience Conference (CRC). :1—6.
The competency to use mobile devices for work-related tasks gives advantages to the company productiveness and expedites business processes. Thus Bring Your Own Device (BYOD) setting emerge to enable work flexibility and technological compatibility. For management, employees’ productivity is important, but they could not jeopardise the security of information and data stored in the corporate network. Securing data and network becomes more complex tasks as it deals with foreign devices, i.e., devices that do not belong to the organisation. With much research focused on pre-implementation and the technical aspects of mobile device usage, post-implementation advancement is receiving less attention. IS audit as one of the post-implementation mechanisms provides performance evaluation of existing IS assets, business operations and process implementation, thus helping management formulating the best strategies in optimising IS practices. This paper discusses the feasibility of IS audit in assessing mobile device security by exploring the risks and vulnerabilities of mobile devices for organisational IS security as well as the perception of Information system management in mobile device security. By analysing related literature, authors pointed out how the references used in the current IS audit research address the mobile device security. This work serves a significant foundation in the future development in mobile device audit.
Ajiri, Victor, Butakov, Sergey, Zavarsky, Pavol.  2020.  Detection Efficiency of Static Analyzers against Obfuscated Android Malware. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :231–234.
Mobile antivirus technologies incorporate static analysis which involves the analysis of programs without its execution. This process relies on pattern matching against a signature repository to identify malware, which can be easily tricked by transformation techniques such as obfuscation. Obfuscation as an evasion technique renders character strings disguised and incomprehensive, to prevent tampering and reengineering, which poses to be a valuable technique malware developers adopt to evade detection. This paper attempts to study the detection efficiency of static analyzers against obfuscated Android malware. This study is the first step in a larger project attempting to improve the efficiency of malware detectors.
Alotaibi, S., Furnell, S., Clarke, N..  2015.  Transparent authentication systems for mobile device security: A review. 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). :406–413.

Sensitive data such as text messages, contact lists, and personal information are stored on mobile devices. This makes authentication of paramount importance. More security is needed on mobile devices since, after point-of-entry authentication, the user can perform almost all tasks without having to re-authenticate. For this reason, many authentication methods have been suggested to improve the security of mobile devices in a transparent and continuous manner, providing a basis for convenient and secure user re-authentication. This paper presents a comprehensive analysis and literature review on transparent authentication systems for mobile device security. This review indicates a need to investigate when to authenticate the mobile user by focusing on the sensitivity level of the application, and understanding whether a certain application may require a protection or not.

Andarzian, Seyed Behnam, Ladani, Behrouz Tork.  2020.  Compositional Taint Analysis of Native Codes for Security Vetting of Android Applications. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :567–572.
Security vetting of Android applications is one of the crucial aspects of the Android ecosystem. Regarding the state of the art tools for this goal, most of them doesn't consider analyzing native codes and only analyze the Java code. However, Android concedes its developers to implement a part or all of their applications using C or C++ code. Thus, applying conservative manners for analyzing Android applications while ignoring native codes would lead to less precision in results. Few works have tried to analyze Android native codes, but only JN-SAF has applied taint analysis using static techniques such as symbolic execution. However, symbolic execution has some problems when is used in large programs. One of these problems is the exponential growth of program paths that would raise the path explosion issue. In this work, we have tried to alleviate this issue by introducing our new tool named CTAN. CTAN applies new symbolic execution methods to angr in a particular way that it can make JN-SAF more efficient and faster. We have introduced compositional taint analysis in CTAN by combining satisfiability modulo theories with symbolic execution. Our experiments show that CTAN is 26 percent faster than its previous work JN-SAF and it also leads to more precision by detecting more data-leakage in large Android native codes.
B
Bays, Jason, Karabiyik, Umit.  2019.  Forensic Analysis of Third Party Location Applications in Android and iOS. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1—6.
Location sharing applications are becoming increasingly common. These applications allow users to share their own locations and view contacts’ current locations on a map. Location applications are commonly used by friends and family members to view Global Positioning System (GPS) location of an individual, but valuable forensic evidence may exist in this data when stored locally on smartphones. This paper aims to discover forensic artifacts from two popular third-party location sharing applications on iOS and Android devices. Industry standard mobile forensic suites are utilized to discover if any locally stored data could be used to assist investigations reliant on knowing the past location of a suspect. Security issues raised regarding the artifacts found during our analysis is also discussed.
Becher, M., Freiling, F.C., Hoffmann, J., Holz, T., Uellenbeck, S., Wolf, C..  2011.  Mobile Security Catching Up? Revealing the Nuts and Bolts of the Security of Mobile Devices Security and Privacy (SP), 2011 IEEE Symposium on. :96-111.

We are currently moving from the Internet society to a mobile society where more and more access to information is done by previously dumb phones. For example, the number of mobile phones using a full blown OS has risen to nearly 200% from Q3/2009 to Q3/2010. As a result, mobile security is no longer immanent, but imperative. This survey paper provides a concise overview of mobile network security, attack vectors using the back end system and the web browser, but also the hardware layer and the user as attack enabler. We show differences and similarities between "normal" security and mobile security, and draw conclusions for further research opportunities in this area.

Butler, Martin, Butler, Rika.  2021.  The Influence of Mobile Operating Systems on User Security Behavior. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :134—138.

Mobile security remains a concern for multiple stakeholders. Safe user behavior is crucial key to avoid and mitigate mobile threats. The research used a survey design to capture key constructs of mobile user threat avoidance behavior. Analysis revealed that there is no significant difference between the two key drivers of secure behavior, threat appraisal and coping appraisal, for Android and iOS users. However, statistically significant differences in avoidance motivation and avoidance behavior of users of the two operating systems were displayed. This indicates that existing threat avoidance models may be insufficient to comprehensively deal with factors that affect mobile user behavior. A newly introduced variable, perceived security, shows a difference in the perceptions of their level of protection among the users of the two operating systems, providing a new direction for research into mobile security.

C
Chang, B., Zhang, F., Chen, B., Li, Y., Zhu, W., Tian, Y., Wang, Z., Ching, A..  2018.  MobiCeal: Towards Secure and Practical Plausibly Deniable Encryption on Mobile Devices. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :454–465.

We introduce MobiCeal, the first practical Plausibly Deniable Encryption (PDE) system for mobile devices that can defend against strong coercive multi-snapshot adversaries, who may examine the storage medium of a user's mobile device at different points of time and force the user to decrypt data. MobiCeal relies on "dummy write" to obfuscate the differences between multiple snapshots of storage medium due to existence of hidden data. By incorporating PDE in block layer, MobiCeal supports a broad deployment of any block-based file systems on mobile devices. More importantly, MobiCeal is secure against side channel attacks which pose a serious threat to existing PDE schemes. A proof of concept implementation of MobiCeal is provided on an LG Nexus 4 Android phone using Android 4.2.2. It is shown that the performance of MobiCeal is significantly better than prior PDE systems against multi-snapshot adversaries.

D
Davidson, Drew, Chen, Yaohui, George, Franklin, Lu, Long, Jha, Somesh.  2017.  Secure Integration of Web Content and Applications on Commodity Mobile Operating Systems. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :652–665.

A majority of today's mobile apps integrate web content of various kinds. Unfortunately, the interactions between app code and web content expose new attack vectors: a malicious app can subvert its embedded web content to steal user secrets; on the other hand, malicious web content can use the privileges of its embedding app to exfiltrate sensitive information such as the user's location and contacts. In this paper, we discuss security weaknesses of the interface between app code and web content through attacks, then introduce defenses that can be deployed without modifying the OS. Our defenses feature WIREframe, a service that securely embeds and renders external web content in Android apps, and in turn, prevents attacks between em- bedded web and host apps. WIREframe fully mediates the interface between app code and embedded web content. Un- like the existing web-embedding mechanisms, WIREframe allows both apps and embedded web content to define simple access policies to protect their own resources. These policies recognize fine-grained security principals, such as origins, and control all interactions between apps and the web. We also introduce WIRE (Web Isolation Rewriting Engine), an offline app rewriting tool that allows app users to inject WIREframe protections into existing apps. Our evaluation, based on 7166 popular apps and 20 specially selected apps, shows these techniques work on complex apps and incur acceptable end-to-end performance overhead.

Derhab, Abdelwahid.  2022.  Keynote Speaker 6: Intrusion detection systems using machine learning for the security of autonomous vehicles. 2022 15th International Conference on Security of Information and Networks (SIN). :1–1.
The emergence of smart cars has revolutionized the automotive industry. Today's vehicles are equipped with different types of electronic control units (ECUs) that enable autonomous functionalities like self-driving, self-parking, lane keeping, and collision avoidance. The ECUs are connected to each other through an in-vehicle network, named Controller Area Network. In this talk, we will present the different cyber attacks that target autonomous vehicles and explain how an intrusion detection system (IDS) using machine learning can play a role in securing the Controller Area Network. We will also discuss the main research contributions for the security of autonomous vehicles. Specifically, we will describe our IDS, named Histogram-based Intrusion Detection and Filtering framework. Next, we will talk about the machine learning explainability issue that limits the acceptability of machine learning in autonomous vehicles, and how it can be addressed using our novel intrusion detection system based on rule extraction methods from Deep Neural Networks.
Deshotels, Luke, Deaconescu, Razvan, Carabas, Costin, Manda, Iulia, Enck, William, Chiroiu, Mihai, Li, Ninghui, Sadeghi, Ahmad-Reza.  2018.  iOracle: Automated Evaluation of Access Control Policies in iOS. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :117-131.

Modern operating systems, such as iOS, use multiple access control policies to define an overall protection system. However, the complexity of these policies and their interactions can hide policy flaws that compromise the security of the protection system. We propose iOracle, a framework that logically models the iOS protection system such that queries can be made to automatically detect policy flaws. iOracle models policies and runtime context extracted from iOS firmware images, developer resources, and jailbroken devices, and iOracle significantly reduces the complexity of queries by modeling policy semantics. We evaluate iOracle by using it to successfully triage executables likely to have policy flaws and comparing our results to the executables exploited in four recent jailbreaks. When applied to iOS 10, iOracle identifies previously unknown policy flaws that allow attackers to modify or bypass access control policies. For compromised system processes, consequences of these policy flaws include sandbox escapes (with respect to read/write file access) and changing the ownership of arbitrary files. By automating the evaluation of iOS access control policies, iOracle provides a practical approach to hardening iOS security by identifying policy flaws before they are exploited.

G
Garae, J., Ko, R. K. L., Apperley, M..  2018.  A Full-Scale Security Visualization Effectiveness Measurement and Presentation Approach. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :639–650.
What makes a security visualization effective? How do we measure visualization effectiveness in the context of investigating, analyzing, understanding and reporting cyber security incidents? Identifying and understanding cyber-attacks are critical for decision making - not just at the technical level, but also the management and policy-making levels. Our research studied both questions and extends our Security Visualization Effectiveness Measurement (SvEm) framework by providing a full-scale effectiveness approach for both theoretical and user-centric visualization techniques. Our framework facilitates effectiveness through interactive three-dimensional visualization to enhance both single and multi-user collaboration. We investigated effectiveness metrics including (1) visual clarity, (2) visibility, (3) distortion rates and (4) user response (viewing) times. The SvEm framework key components are: (1) mobile display dimension and resolution factor, (2) security incident entities, (3) user cognition activators and alerts, (4) threat scoring system, (5) working memory load and (6) color usage management. To evaluate our full-scale security visualization effectiveness framework, we developed VisualProgger - a real-time security visualization application (web and mobile) visualizing data provenance changes in SvEm use cases. Finally, the SvEm visualizations aims to gain the users' attention span by ensuring a consistency in the viewer's cognitive load, while increasing the viewer's working memory load. In return, users have high potential to gain security insights in security visualization. Our evaluation shows that viewers perform better with prior knowledge (working memory load) of security events and that circular visualization designs attract and maintain the viewer's attention span. These discoveries revealed research directions for future work relating to measurement of security visualization effectiveness.
Geethanjali, D, Ying, Tan Li, Melissa, Chua Wan Jun, Balachandran, Vivek.  2018.  AEON: Android Encryption Based Obfuscation. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :146–148.

Android applications are vulnerable to reverse engineering which could result in tampering and repackaging of applications. Even though there are many off the shelf obfuscation tools that hardens Android applications, they are limited to basic obfuscation techniques. Obfuscation techniques that transform the code segments drastically are difficult to implement on Android because of the Android runtime verifier which validates the loaded code. In this paper, we introduce a novel obfuscation technique, Android Encryption based Obfuscation (AEON), which can encrypt code segments and perform runtime decryption during execution. The encrypted code is running outside of the normal Android virtual machine, in an embeddable Java source interpreter and thereby circumventing the scrutiny of Android runtime verifier. Our obfuscation technique works well with Android source code and Dalvik bytecode.

Gu, R., Zhang, X., Yu, L., Zhang, J..  2018.  Enhancing Security and Scalability in Software Defined LTE Core Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :837–842.

The rapid development of mobile networks has revolutionized the way of accessing the Internet. The exponential growth of mobile subscribers, devices and various applications frequently brings about excessive traffic in mobile networks. The demand for higher data rates, lower latency and seamless handover further drive the demand for the improved mobile network design. However, traditional methods can no longer offer cost-efficient solutions for better user quality of experience with fast time-to-market. Recent work adopts SDN in LTE core networks to meet the requirement. In these software defined LTE core networks, scalability and security become important design issues that must be considered seriously. In this paper, we propose a scalable channel security scheme for the software defined LTE core network. It applies the VxLAN for scalable tunnel establishment and MACsec for security enhancement. According to our evaluation, the proposed scheme not only enhances the security of the channel communication between different network components, but also improves the flexibility and scalability of the core network with little performance penalty. Moreover, it can also shed light on the design of the next generation cellular network.

H
Habib, S. M., Alexopoulos, N., Islam, M. M., Heider, J., Marsh, S., Müehlhäeuser, M..  2018.  Trust4App: Automating Trustworthiness Assessment of Mobile Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :124–135.

Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.

Haciosman, M., Bin Ye, Howells, G..  2014.  Protecting and Identifiying Smartphone Apps Using Icmetrics. Emerging Security Technologies (EST), 2014 Fifth International Conference on. :94-98.

As web-server spoofing is increasing, we investigate a novel technology termed ICmetrics, used to identify fraud for given software/hardware programs based on measurable quantities/features. ICmetrics technology is based on extracting features from digital systems' operation that may be integrated together to generate unique identifiers for each of the systems or create unique profiles that describe the systems' actual behavior. This paper looks at the properties of the several behaviors as a potential ICmetrics features to identify android apps, it presents several quality features which meet the ICmetrics requirements and can be used for encryption key generation. Finally, the paper identifies four android apps and verifies the use of ICmetrics by identifying a spoofed app as a different app altogether.

Han, Dianqi, Chen, Yimin, Li, Tao, Zhang, Rui, Zhang, Yaochao, Hedgpeth, Terri.  2018.  Proximity-Proof: Secure and Usable Mobile Two-Factor Authentication. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :401–415.

Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.

Holmes, Ashton, Desai, Sunny, Nahapetian, Ani.  2016.  LuxLeak: Capturing Computing Activity Using Smart Device Ambient Light Sensors. Proceedings of the 2Nd Workshop on Experiences in the Design and Implementation of Smart Objects. :47–52.

In this paper, we consider side-channel mechanisms, specifically using smart device ambient light sensors, to capture information about user computing activity. We distinguish keyboard keystrokes using only the ambient light sensor readings from a smart watch worn on the user's non-dominant hand. Additionally, we investigate the feasibility of capturing screen emanations for determining user browser usage patterns. The experimental results expose privacy and security risks, as well as the potential for new mobile user interfaces and applications.

J
Jin, Yong, Tomoishi, Masahiko.  2019.  Encrypted QR Code Based Optical Challenge-Response Authentication by Mobile Devices for Mounting Concealed File System. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:676–681.
Nowadays mobile devices have become the majority terminals used by people for social activities so that carrying business data and private information in them have become normal. Accordingly, the risk of data related cyber attacks has become one of the most critical security concerns. The main purpose of this work is to mitigate the risk of data breaches and damages caused by malware and the lost of mobile devices. In this paper, we propose an encrypted QR code based optical challenge-response authentication by mobile devices for mounting concealed file systems. The concealed file system is basically invisible to the users unless being successfully mounted. The proposed authentication scheme practically applies cryptography and QR code technologies to challenge-response scheme in order to secure the concealed file system. The key contribution of this work is to clarify a possibility of a mounting authentication scheme involving two mobile devices using a special optical communication way (QR code exchanges) which can be realizable without involving any network accesses. We implemented a prototype system and based on the preliminary feature evaluations results we confirmed that encrypted QR code based optical challenge-response is possible between a laptop and a smart phone and it can be applied to authentication for mounting concealed file systems.
K
Khanmohammadi, K., Hamou-Lhadj, A..  2017.  HyDroid: A Hybrid Approach for Generating API Call Traces from Obfuscated Android Applications for Mobile Security. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :168–175.

The growing popularity of Android applications makes them vulnerable to security threats. There exist several studies that focus on the analysis of the behaviour of Android applications to detect the repackaged and malicious ones. These techniques use a variety of features to model the application's behaviour, among which the calls to Android API, made by the application components, are shown to be the most reliable. To generate the APIs that an application calls is not an easy task. This is because most malicious applications are obfuscated and do not come with the source code. This makes the problem of identifying the API methods invoked by an application an interesting research issue. In this paper, we present HyDroid, a hybrid approach that combines static and dynamic analysis to generate API call traces from the execution of an application's services. We focus on services because they contain key characteristics that allure attackers to misuse them. We show that HyDroid can be used to extract API call trace signatures of several malware families.

Krupp, B., Sridhar, N., Zhao, W..  2017.  SPE: Security and Privacy Enhancement Framework for Mobile Devices. IEEE Transactions on Dependable and Secure Computing. 14:433–446.

In this paper, we present a security and privacy enhancement (SPE) framework for unmodified mobile operating systems. SPE introduces a new layer between the application and the operating system and does not require a device be jailbroken or utilize a custom operating system. We utilize an existing ontology designed for enforcing security and privacy policies on mobile devices to build a policy that is customizable. Based on this policy, SPE provides enhancements to native controls that currently exist on the platform for privacy and security sensitive components. SPE allows access to these components in a way that allows the framework to ensure the application is truthful in its declared intent and ensure that the user's policy is enforced. In our evaluation we verify the correctness of the framework and the computing impact on the device. Additionally, we discovered security and privacy issues in several open source applications by utilizing the SPE Framework. From our findings, if SPE is adopted by mobile operating systems producers, it would provide consumers and businesses the additional privacy and security controls they demand and allow users to be more aware of security and privacy issues with applications on their devices.

L
Li, Ziqing, Feng, Guiling.  2020.  Inter-Language Static Analysis for Android Application Security. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :647–650.

The Android application market will conduct various security analysis on each application to predict its potential harm before put it online. Since almost all the static analysis tools can only detect malicious behaviors in the Java layer, more and more malwares try to avoid static analysis by taking the malicious codes to the Native layer. To provide a solution for the above situation, there's a new research aspect proposed in this paper and defined as Inter-language Static Analysis. As all the involved technologies are introduced, the current research results of them will be captured in this paper, such as static analysis in Java layer, binary analysis in Native layer, Java-Native penetration technology, etc.

Liu, Junqiu, Wang, Fei, Zhao, Shuang, Wang, Xin, Chen, Shuhui.  2019.  iMonitor, An APP-Level Traffic Monitoring and Labeling System for iOS Devices. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :211—218.
In this paper, we propose the first traffic monitoring and labeling system for iOS devices, named iMonitor, which not just captures mobile network traffic in .pcap files, but also provides comprehensive APP-related and user-related information of captured packets. Through further analysis, one can obtain the exact APP or device where each packet comes from. The labeled traffic can be used in many research areas for mobile security, such as privacy leakage detection and user profiling. Given the implementation methodology of NetworkExtension framework of iOS 9+, APP labels of iMonitor are reliable enough so that labeled traffic can be regarded as training data for any traffic classification methods. Evaluations on real iPhones demonstrate that iMonitor has no notable impact upon user experience even with slight packet latency. Also, the experiment result supports our motivation that mobile traffic monitoring for iOS is absolutely necessary, as traffic generated by different OSes like Android and iOS are different and unreplaceable in researches.
Liu, Xueqing.  2018.  Assisting the Development of Secure Mobile Apps with Natural Language Processing. 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). :279–280.
With the rapid growth of mobile devices and mobile apps, mobile has surpassed desktop and now has the largest worldwide market share [1]. While such growth brings in more opportunities, it also poses new challenges in security. Among the challenges, user privacy protection has drawn tremendous attention in recent years, especially after the Facebook-Cambridge Analytica data scandal in April 2018 [2].
M
Michalevsky, Yan, Nath, Suman, Liu, Jie.  2016.  MASHaBLE: Mobile Applications of Secret Handshakes over Bluetooth LE. Proceedings of the 22Nd Annual International Conference on Mobile Computing and Networking. :387–400.

We present new applications for cryptographic secret handshakes between mobile devices on top of Bluetooth Low-Energy (LE). Secret handshakes enable mutual authentication, with the property that the parties learn nothing about each other unless they have been both issued credentials by a group administrator. This property provides strong privacy guarantees that enable interesting applications. One of them is proximity-based discovery for private communities. We introduce MASHaBLE, a mobile application that enables participants to discover and interact with nearby users if and only if they belong to the same secret community. We use direct peer-to-peer communication over Bluetooth LE, rather than relying on a central server. We discuss the specifics of implementing secret handshakes over Bluetooth LE and present our prototype implementation.