Biblio
The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.
Vehicles are becoming increasingly connected to the outside world. We can connect our devices to the vehicle's infotainment system and internet is being added as a functionality. Therefore, security is a major concern as the attack surface has become much larger than before. Consequently, attackers are creating malware that can infect vehicles and perform life-threatening activities. For example, a malware can compromise vehicle ECUs and cause unexpected consequences. Hence, ensuring the security of connected vehicle software and networks is extremely important to gain consumer confidence and foster the growth of this emerging market. In this paper, we propose a characterization of vehicle malware and a security architecture to protect vehicle from these malware. The architecture uses multiple computational platforms and makes use of the virtualization technique to limit the attack surface. There is a real-time operating system to control critical vehicle functionalities and multiple other operating systems for non-critical functionalities (infotainment, telematics, etc.). The security architecture also describes groups of components for the operating systems to prevent malicious activities and perform policing (monitor, detect, and control). We believe this work will help automakers guard their systems against malware and provide a clear guideline for future research.
The importance and potential advantages with a comprehensive product architecture description are well described in the literature. However, developing such a description takes additional resources, and it is difficult to maintain consistency with evolving implementations. This paper presents an approach and industrial experience which is based on architecture recovery from source code at truck manufacturer Scania CV AB. The extracted representation of the architecture is presented in several views and verified on CAN signal level. Lessons learned are discussed.