Biblio
Modern security protocols may involve humans in order to compare or copy short strings between different devices. Multi-factor authentication protocols, such as Google 2-factor or 3D-secure are typical examples of such protocols. However, such short strings may be subject to brute force attacks. In this paper we propose a symbolic model which includes attacker capabilities for both guessing short strings, and producing collisions when short strings result from an application of weak hash functions. We propose a new decision procedure for analysing (a bounded number of sessions of) protocols that rely on short strings. The procedure has been integrated in the AKISS tool and tested on protocols from the ISO/IEC 9798-6:2010 standard.
Deadlock freedom is a key challenge in the design of communication networks. Wormhole switching is a popular switching technique, which is also prone to deadlocks. Deadlock analysis of routing functions is a manual and complex task. We propose an algorithm that automatically proves routing functions deadlock-free or outputs a minimal counter-example explaining the source of the deadlock. Our algorithm is the first to automatically check a necessary and sufficient condition for deadlock-free routing. We illustrate its efficiency in a complex adaptive routing function for torus topologies. Results are encouraging. Deciding deadlock freedom is co-NP-Complete for wormhole networks. Nevertheless, our tool proves a 13 × 13 torus deadlock-free within seconds. Finding minimal deadlocks is more difficult. Our tool needs four minutes to find a minimal deadlock in a 11 × 11 torus while it needs nine hours for a 12 × 12 network.