Visible to the public Biblio

Filters: Keyword is electromyography  [Clear All Filters]
2023-03-03
Pleva, Matus, Korecko, Stefan, Hladek, Daniel, Bours, Patrick, Skudal, Markus Hoff, Liao, Yuan-Fu.  2022.  Biometric User Identification by Forearm EMG Analysis. 2022 IEEE International Conference on Consumer Electronics - Taiwan. :607–608.
The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.
ISSN: 2575-8284
Korecko, Stefan, Haluska, Matus, Pleva, Matus, Skudal, Markus Hoff, Bours, Patrick.  2022.  EMG Data Collection for Multimodal Keystroke Analysis. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :351–355.
User authentication based on muscle tension manifested during password typing seems to be an interesting additional layer of security. It represents another way of verifying a person’s identity, for example in the context of continuous verification. In order to explore the possibilities of such authentication method, it was necessary to create a capturing software that records and stores data from EMG (electromyography) sensors, enabling a subsequent analysis of the recorded data to verify the relevance of the method. The work presented here is devoted to the design, implementation and evaluation of such a solution. The solution consists of a protocol and a software application for collecting multimodal data when typing on a keyboard. Myo armbands on both forearms are used to capture EMG and inertial data while additional modalities are collected from a keyboard and a camera. The user experience evaluation of the solution is presented, too.
ISSN: 2770-5226
2015-05-06
Malik, O.A., Arosha Senanayake, S.M.N., Zaheer, D..  2015.  An Intelligent Recovery Progress Evaluation System for ACL Reconstructed Subjects Using Integrated 3-D Kinematics and EMG Features. Biomedical and Health Informatics, IEEE Journal of. 19:453-463.

An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems.