Visible to the public Biblio

Filters: Keyword is anomaly based approach  [Clear All Filters]
2020-06-01
Patel, Himanshu B., Jinwala, Devesh C..  2019.  Blackhole Detection in 6LoWPAN Based Internet of Things: An Anomaly Based Approach. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :947—954.

The Internet of things networks is vulnerable to many DOS attacks. Among them, Blackhole attack is one of the severe attacks as it hampers communication among network devices. In general, the solutions presented in the literature for Blackhole detection are not efficient. In addition, the existing approaches do not factor-in, the consumption in resources viz. energy, bandwidth and network lifetime. Further, these approaches are also insensitive to the mechanism used for selecting a parent in on Blackhole formation. Needless to say, a blackhole node if selected as parent would lead to orchestration of this attack trivially and hence it is an important factor in selection of a parent. In this paper, we propose SIEWE (Strainer based Intrusion Detection of Blackhole in 6LoWPAN for the Internet of Things) - an Intrusion detection mechanism to identify Blackhole attack on Routing protocol RPL in IoT. In contrast to the Watchdog based approaches where every node in network runs in promiscuous mode, SIEWE filters out suspicious nodes first and then verifies the behavior of those nodes only. The results that we obtain, show that SIEWE improves the Packet Delivery Ratio (PDR) of the system by blacklisting malicious Blackhole nodes.

2015-05-06
Pandey, S.K., Mehtre, B.M..  2014.  A Lifecycle Based Approach for Malware Analysis. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :767-771.

Most of the detection approaches like Signature based, Anomaly based and Specification based are not able to analyze and detect all types of malware. Signature-based approach for malware detection has one major drawback that it cannot detect zero-day attacks. The fundamental limitation of anomaly based approach is its high false alarm rate. And specification-based detection often has difficulty to specify completely and accurately the entire set of valid behaviors a malware should exhibit. Modern malware developers try to avoid detection by using several techniques such as polymorphic, metamorphic and also some of the hiding techniques. In order to overcome these issues, we propose a new approach for malware analysis and detection that consist of the following twelve stages Inbound Scan, Inbound Attack, Spontaneous Attack, Client-Side Exploit, Egg Download, Device Infection, Local Reconnaissance, Network Surveillance, & Communications, Peer Coordination, Attack Preparation, and Malicious Outbound Propagation. These all stages will integrate together as interrelated process in our proposed approach. This approach had solved the limitations of all the three approaches by monitoring the behavioral activity of malware at each any every stage of life cycle and then finally it will give a report of the maliciousness of the files or software's.