Visible to the public Biblio

Filters: Keyword is switched systems  [Clear All Filters]
2018-09-28
Prabhakar, Pavithra, García Soto, Miriam.  2017.  Formal Synthesis of Stabilizing Controllers for Switched Systems. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. :111–120.
In this paper, we describe an abstraction-based method for synthesizing a state-based switching control for stabilizing a family of dynamical systems. Given a set of dynamical systems and a set of polyhedral switching surfaces, the algorithm synthesizes a strategy that assigns to every surface the linear dynamics to switch to at the surface. Our algorithm constructs a finite game graph that consists of the switching surfaces as the existential nodes and the choices of the dynamics as the universal nodes. In addition, the edges capture quantitative information about the evolution of the distance of the state from the equilibrium point along the executions. A switching strategy for the family of dynamical systems is extracted by finding a strategy on the game graph which results in plays having a bounded weight. Such a strategy is obtained by reducing the problem to the strategy synthesis for an energy game, which is a well-studied problem in the literature. We have implemented our algorithm for polyhedral inclusion dynamics and linear dynamics. We illustrate our algorithm on examples from these two classes of systems.
2017-12-27
Wang, Y., Kang, S., Lan, C., Liang, Y., Zhu, J., Gao, H..  2016.  A five-dimensional chaotic system with a large parameter range and the circuit implementation of a time-switched system. 2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS). :1–6.

To enhance the encryption and anti-translation capability of the information, we constructed a five-dimensional chaotic system. Combined with the Lü system, a time-switched system with multiple chaotic attractors is realized in the form of a digital circuit. Some characteristics of the five-dimensional system are analyzed, such as Poincare mapping, the Lyapunov exponent spectrum, and bifurcation diagram. The analysis shows that the system exhibits chaotic characteristics for a wide range of parameter values. We constructed a time-switched expression between multiple chaotic attractors using the communication between a microcontroller unit (MCU) and field programmable gate array (FPGA). The system can quickly switch between different chaotic attractors within the chaotic system and between chaotic systems at any time, leading to signal sources with more variability, diversity, and complexity for chaotic encryption.

2017-07-19
Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for Estimation and Mode Detection of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the eciency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

2017-04-21
Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for State Estimation of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the efficiency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

2015-11-17
Ray Essick, University of Illinois at Urbana-Champaign, Ji-Woong Lee, Pennsylvania State University, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Control of Linear Switched Systems with Receding Horizon Modal Information. IEEE Transactions on Automatic Control. 59(9)

We provide an exact solution to two performance problems—one of disturbance attenuation and one of windowed variance minimization—subject to exponential stability. Considered are switched systems, whose parameters come from a finite set and switch according to a language such as that specified by an automaton. The controllers are path-dependent, having finite memory of past plant parameters and finite foreknowledge of future parameters. Exact, convex synthesis conditions for each performance problem are expressed in terms of nested linear matrix inequalities. The resulting semidefinite programming problem may be solved offline to arrive at a suitable controller. A notion of path-by-path performance is introduced for each performance problem, leading to improved system performance. Non-regular switching languages are considered and the results are extended to these languages. Two simple, physically motivated examples are given to demonstrate the application of these results.