Biblio
Mobile Ad Hoc Networks are dynamic in nature and have no rigid or reliable network infrastructure by their very definition. They are expected to be self-governed and have dynamic wireless links which are not entirely reliable in terms of connectivity and security. Several factors could cause their degradation, such as attacks by malicious and selfish nodes which result in data carrying packets being dropped which in turn could cause breaks in communication between nodes in the network. This paper aims to address the issue of remedy and mitigation of the damage caused by packet drops. We proposed an improvement on the EAACK protocol to reduce the network overhead packet delivery ratio by using hybrid cryptography techniques DES due to its higher efficiency in block encryption, and RSA due to its management in key cipher. Comparing to the existing approaches, our simulated results show that hybrid cryptography techniques provide higher malicious behavior detection rates, and improve the performance. This research can also lead to more future efforts in using hybrid encryption based authentication techniques for attack detection/prevention in MANETs.
This paper considers a minimax control problem over multiple packet dropping channels. The channel losses are assumed to be Bernoulli processes, and operate under the transmission control protocol (TCP); hence acknowledgments of control and measurement drops are available at each time. Under this setting, we obtain an output feedback minimax controller, which are implicitly dependent on rates of control and measurement losses. For the infinite-horizon case, we first characterize achievable H∞ disturbance attenuation levels, and then show that the underlying condition is a function of packet loss rates. We also address the converse part by showing that the condition of the minimum attainable loss rates for closed-loop system stability is a function of H∞ disturbance attenuation parameter. Hence, those conditions are coupled with each other. Finally, we show the limiting behavior of the minimax controller under the disturbance attenuation parameter.