Visible to the public Biblio

Found 160 results

Filters: Keyword is Differential privacy  [Clear All Filters]
2017-05-22
Hay, Michael, Machanavajjhala, Ashwin, Miklau, Gerome, Chen, Yan, Zhang, Dan.  2016.  Principled Evaluation of Differentially Private Algorithms Using DPBench. Proceedings of the 2016 International Conference on Management of Data. :139–154.

Differential privacy has become the dominant standard in the research community for strong privacy protection. There has been a flood of research into query answering algorithms that meet this standard. Algorithms are becoming increasingly complex, and in particular, the performance of many emerging algorithms is data dependent, meaning the distribution of the noise added to query answers may change depending on the input data. Theoretical analysis typically only considers the worst case, making empirical study of average case performance increasingly important. In this paper we propose a set of evaluation principles which we argue are essential for sound evaluation. Based on these principles we propose DPBench, a novel evaluation framework for standardized evaluation of privacy algorithms. We then apply our benchmark to evaluate algorithms for answering 1- and 2-dimensional range queries. The result is a thorough empirical study of 15 published algorithms on a total of 27 datasets that offers new insights into algorithm behavior–-in particular the influence of dataset scale and shape–-and a more complete characterization of the state of the art. Our methodology is able to resolve inconsistencies in prior empirical studies and place algorithm performance in context through comparison to simple baselines. Finally, we pose open research questions which we hope will guide future algorithm design.

Krishnan, Sanjay, Wang, Jiannan, Franklin, Michael J., Goldberg, Ken, Kraska, Tim.  2016.  PrivateClean: Data Cleaning and Differential Privacy. Proceedings of the 2016 International Conference on Management of Data. :937–951.

Recent advances in differential privacy make it possible to guarantee user privacy while preserving the main characteristics of the data. However, most differential privacy mechanisms assume that the underlying dataset is clean. This paper explores the link between data cleaning and differential privacy in a framework we call PrivateClean. PrivateClean includes a technique for creating private datasets of numerical and discrete-valued attributes, a formalism for privacy-preserving data cleaning, and techniques for answering sum, count, and avg queries after cleaning. We show: (1) how the degree of privacy affects subsequent aggregate query accuracy, (2) how privacy potentially amplifies certain types of errors in a dataset, and (3) how this analysis can be used to tune the degree of privacy. The key insight is to maintain a bipartite graph relating dirty values to clean values and use this graph to estimate biases due to the interaction between cleaning and privacy. We validate these results on four datasets with a variety of well-studied cleaning techniques including using functional dependencies, outlier filtering, and resolving inconsistent attributes.

2017-05-18
Wang, Weina, Ying, Lei, Zhang, Junshan.  2016.  The Value of Privacy: Strategic Data Subjects, Incentive Mechanisms and Fundamental Limits. Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science. :249–260.

We study the value of data privacy in a game-theoretic model of trading private data, where a data collector purchases private data from strategic data subjects (individuals) through an incentive mechanism. The private data of each individual represents her knowledge about an underlying state, which is the information that the data collector desires to learn. Different from most of the existing work on privacy-aware surveys, our model does not assume the data collector to be trustworthy. Then, an individual takes full control of its own data privacy and reports only a privacy-preserving version of her data. In this paper, the value of ε units of privacy is measured by the minimum payment of all nonnegative payment mechanisms, under which an individual's best response at a Nash equilibrium is to report the data with a privacy level of ε. The higher ε is, the less private the reported data is. We derive lower and upper bounds on the value of privacy which are asymptotically tight as the number of data subjects becomes large. Specifically, the lower bound assures that it is impossible to use less amount of payment to buy ε units of privacy, and the upper bound is given by an achievable payment mechanism that we designed. Based on these fundamental limits, we further derive lower and upper bounds on the minimum total payment for the data collector to achieve a given learning accuracy target, and show that the total payment of the designed mechanism is at most one individual's payment away from the minimum.

Sealfon, Adam.  2016.  Shortest Paths and Distances with Differential Privacy. Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. :29–41.

We introduce a model for differentially private analysis of weighted graphs in which the graph topology (υ,ε) is assumed to be public and the private information consists only of the edge weights ω : ε → R+. This can express hiding congestion patterns in a known system of roads. Differential privacy requires that the output of an algorithm provides little advantage, measured by privacy parameters ε and δ, for distinguishing between neighboring inputs, which are thought of as inputs that differ on the contribution of one individual. In our model, two weight functions w,w' are considered to be neighboring if they have l1 distance at most one. We study the problems of privately releasing a short path between a pair of vertices and of privately releasing approximate distances between all pairs of vertices. We are concerned with the approximation error, the difference between the length of the released path or released distance and the length of the shortest path or actual distance. For the problem of privately releasing a short path between a pair of vertices, we prove a lower bound of Ω(textbarυtextbar) on the additive approximation error for fixed privacy parameters ε,δ. We provide a differentially private algorithm that matches this error bound up to a logarithmic factor and releases paths between all pairs of vertices, not just a single pair. The approximation error achieved by our algorithm can be bounded by the number of edges on the shortest path, so we achieve better accuracy than the worst-case bound for pairs of vertices that are connected by a low-weight path consisting of o(textbarυtextbar) vertices. For the problem of privately releasing all-pairs distances, we show that for trees we can release all-pairs distances with approximation error \$O(log2.5textbarυtextbar) for fixed privacy parameters. For arbitrary bounded-weight graphs with edge weights in [0,M] we can brelease all distances with approximation error Õ(√textgreater(textbarυtextbarM).

2017-05-16
Maruseac, Mihai, Ghinita, Gabriel.  2016.  Privacy-Preserving Mining of Sequential Association Rules from Provenance Workflows. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :127–129.

Provenance workflows capture movement and transformation of data in complex environments, such as document management in large organizations, content generation and sharing in in social media, scientific computations, etc. Sharing and processing of provenance workflows brings numerous benefits, e.g., improving productivity in an organization, understanding social media interaction patterns, etc. However, directly sharing provenance may also disclose sensitive information such as confidential business practices, or private details about participants in a social network. We propose an algorithm that privately extracts sequential association rules from provenance workflow datasets. Finding such rules has numerous practical applications, such as capacity planning or identifying hot-spots in provenance graphs. Our approach provides good accuracy and strong privacy, by leveraging on the exponential mechanism of differential privacy. We propose an heuristic that identifies promising candidate rules and makes judicious use of the privacy budget. Experimental results show that the our approach is fast and accurate, and clearly outperforms the state-of-the-art. We also identify influential factors in improving accuracy, which helps in choosing promising directions for future improvement.

2017-04-21
Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal references. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T/Nε2), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

2017-03-29
Zhang, Jun, Xiao, Xiaokui, Xie, Xing.  2016.  PrivTree: A Differentially Private Algorithm for Hierarchical Decompositions. Proceedings of the 2016 International Conference on Management of Data. :155–170.

Given a set D of tuples defined on a domain Omega, we study differentially private algorithms for constructing a histogram over Omega to approximate the tuple distribution in D. Existing solutions for the problem mostly adopt a hierarchical decomposition approach, which recursively splits Omega into sub-domains and computes a noisy tuple count for each sub-domain, until all noisy counts are below a certain threshold. This approach, however, requires that we (i) impose a limit h on the recursion depth in the splitting of Omega and (ii) set the noise in each count to be proportional to h. The choice of h is a serious dilemma: a small h makes the resulting histogram too coarse-grained, while a large h leads to excessive noise in the tuple counts used in deciding whether sub-domains should be split. Furthermore, h cannot be directly tuned based on D; otherwise, the choice of h itself reveals private information and violates differential privacy. To remedy the deficiency of existing solutions, we present PrivTree, a histogram construction algorithm that adopts hierarchical decomposition but completely eliminates the dependency on a pre-defined h. The core of PrivTree is a novel mechanism that (i) exploits a new analysis on the Laplace distribution and (ii) enables us to use only a constant amount of noise in deciding whether a sub-domain should be split, without worrying about the recursion depth of splitting. We demonstrate the application of PrivTree in modelling spatial data, and show that it can be extended to handle sequence data (where the decision in sub-domain splitting is not based on tuple counts but a more sophisticated measure). Our experiments on a variety of real datasets show that PrivTree considerably outperforms the states of the art in terms of data utility.

2017-03-07
Krishnan, Sanjay, Wang, Jiannan, Franklin, Michael J., Goldberg, Ken, Kraska, Tim.  2016.  PrivateClean: Data Cleaning and Differential Privacy. Proceedings of the 2016 International Conference on Management of Data. :937–951.

Recent advances in differential privacy make it possible to guarantee user privacy while preserving the main characteristics of the data. However, most differential privacy mechanisms assume that the underlying dataset is clean. This paper explores the link between data cleaning and differential privacy in a framework we call PrivateClean. PrivateClean includes a technique for creating private datasets of numerical and discrete-valued attributes, a formalism for privacy-preserving data cleaning, and techniques for answering sum, count, and avg queries after cleaning. We show: (1) how the degree of privacy affects subsequent aggregate query accuracy, (2) how privacy potentially amplifies certain types of errors in a dataset, and (3) how this analysis can be used to tune the degree of privacy. The key insight is to maintain a bipartite graph relating dirty values to clean values and use this graph to estimate biases due to the interaction between cleaning and privacy. We validate these results on four datasets with a variety of well-studied cleaning techniques including using functional dependencies, outlier filtering, and resolving inconsistent attributes.

2016-12-14
Zhenqi Huang, University of Illinois at Urbana-Champaign, Yu Wang, University of Illinois at Urbana-Champaign.  2016.  Differential Privacy, Entropy and Security in Distributed Control of Cyber Physical Systems.

The concept of differential privacy stems from the study of private query of datasets. In this work, we apply this concept to discrete-time, linear distributed control systems in which agents need to maintain privacy of certain preferences, while sharing information for better system-level performance. The system has N agents operating in a shared environment that couples their dynamics. We show that for stable systems the performance grows as O(T3/Nε2), where T is the time horizon and ε is the differential privacy parameter. Next, we study lower-bounds in terms of the Shannon entropy of the minimal mean square estimate of the system’s private initial state from noisy communications between an agent and the server. We show that for any of noise-adding differentially private mechanism, then the Shannon entropy is at least nN(1−ln(ε/2)), where n is the dimension of the system, and t he lower bound is achieved by a Laplace-noise-adding mechanism. Finally, we study the problem of keeping the objective functions of individual agents differentially private in the context of cloud-based distributed optimization. The result shows a trade-off between the privacy of objective functions and the performance of the distributed optimization algorithm with noise.

Presented at the Joint Trust and Security/Science of Security Seminar, April 26, 2016.

2016-04-11
Roy Dong, Walid Krichene, Alexandre M. Bayen, S. Shankar Sastry.  2016.  Differential Privacy of Populations in Routing Games. CoRR. abs/1601.04041

As our ground transportation infrastructure modernizes, the large amount of data being measured, transmitted, and stored motivates an analysis of the privacy aspect of these emerging cyber-physical technologies. In this paper, we consider privacy in the routing game, where the origins and destinations of drivers are considered private. This is motivated by the fact that this spatiotemporal information can easily be used as the basis for inferences for a person's activities. More specifically, we consider the differential privacy of the mapping from the amount of flow for each origin-destination pair to the traffic flow measurements on each link of a traffic network. We use a stochastic online learning framework for the population dynamics, which is known to converge to the Nash equilibrium of the routing game. We analyze the sensitivity of this process and provide theoretical guarantees on the convergence rates as well as differential privacy values for these models. We confirm these with simulations on a small example.