Visible to the public Biblio

Filters: Keyword is tampering attack  [Clear All Filters]
2021-09-30
Zhou, Jun, Li, Mengquan, Guo, Pengxing, Liu, Weichen.  2020.  Mitigation of Tampering Attacks for MR-Based Thermal Sensing in Optical NoCs. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :554–559.
As an emerging role in on-chip communication, the optical networks-on-chip (ONoCs) can provide ultra-high bandwidth, low latency and low power dissipation for the data transfer. However, the thermo-optic effects of the photonic devices have a great impact on the operating performance and reliability of ONoCs, where the thermal-aware control is used to alleviate it. Furthermore, the temperature-sensitive ONoCs are prone to be attacked by the hardware Trojans (HTs) covertly embedded in the integrated circuits (ICs) from the malicious third-party components, leading to performance degradation, denial of service (DoS), or even permanent damages. In this paper, we focus on the tampering attacks on optical sampling during the thermal sensing process in ONoCs. Corresponding approaches are proposed to mitigate the negative impacts from HT attacks. Evaluation results indicate that our approach can significantly enhance the hardware security of thermal sensing for ONoC with trivial overheads of up to 3.06% and 2.6% in average latency and energy consumption, respectively.
2016-04-11
Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, Xenofon Koutsoukos.  2016.  Vulnerability of Transportation Networks to Traffic-Signal Tampering. 7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.