Visible to the public Biblio

Filters: Keyword is authentication key  [Clear All Filters]
2019-09-26
Nelmiawati, Arifandi, W..  2018.  A Seamless Secret Sharing Scheme Implementation for Securing Data in Public Cloud Storage Service. 2018 International Conference on Applied Engineering (ICAE). :1-5.

Public cloud data storage services were considered as a potential alternative to store low-cost digital data in the short term. They are offered by different providers on the Internet. Some providers offer limited free plans for the users who are starting the service. However, data security concern arises when data stored are considered as a valuable asset. This study explores the usage of secret sharing scheme: Rabin's IDA and Shamir's SSA to implement a tool called dCloud for file protection stored in public cloud storage in a seamless way. It addresses data security by hiding its complexities when targeting ordinary non-technical users. The secret key is automatically generated by dCloud in a secure random way on Rabin's IDA. Shamir's SSA completes the process through dispersing the key into each of Rabin's IDA output files. Moreover, the Hash value of the original file is added to each of those output files to confirm the integrity of the file during reconstruction. Besides, the authentication key is used to communicate with all of the defined service providers during storage and reconstruction as well. It is stored into local secure key-store. By having a key to access the key-store, an ordinary non-technical user will be able to use dCloud to store and retrieve targeted file within defined public cloud storage services securely.

2016-05-04
Xianqing Yu, P. Ning, M. A. Vouk.  2015.  Enhancing security of Hadoop in a public cloud. Information and Communication Systems (ICICS), 2015 6th International Conference on. :38-43.

Hadoop has become increasingly popular as it rapidly processes data in parallel. Cloud computing gives reliability, flexibility, scalability, elasticity and cost saving to cloud users. Deploying Hadoop in cloud can benefit Hadoop users. Our evaluation exhibits that various internal cloud attacks can bypass current Hadoop security mechanisms, and compromised Hadoop components can be used to threaten overall Hadoop. It is urgent to improve compromise resilience, Hadoop can maintain a relative high security level when parts of Hadoop are compromised. Hadoop has two vulnerabilities that can dramatically impact its compromise resilience. The vulnerabilities are the overloaded authentication key, and the lack of fine-grained access control at the data access level. We developed a security enhancement for a public cloud-based Hadoop, named SEHadoop, to improve the compromise resilience through enhancing isolation among Hadoop components and enforcing least access privilege for Hadoop processes. We have implemented the SEHadoop model, and demonstrated that SEHadoop fixes the above vulnerabilities with minimal or no run-time overhead, and effectively resists related attacks.