Visible to the public Biblio

Filters: Keyword is network verification  [Clear All Filters]
2021-05-03
Takita, Yutaka, Miyabe, Masatake, Tomonaga, Hiroshi, Oguchi, Naoki.  2020.  Scalable Impact Range Detection against Newly Added Rules for Smart Network Verification. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1471–1476.
Technological progress in cloud networking, 5G networks, and the IoT (Internet of Things) are remarkable. In addition, demands for flexible construction of SoEs (Systems on Engagement) for various type of businesses are increasing. In such environments, dynamic changes of network rules, such as access control (AC) or packet forwarding, are required to ensure function and security in networks. On the other hand, it is becoming increasingly difficult to grasp the exact situation in such networks by utilizing current well-known network verification technologies since a huge number of network rules are complexly intertwined. To mitigate these issues, we have proposed a scalable network verification approach utilizing the concept of "Packet Equivalence Class (PEC)," which enable precise network function verification by strictly recognizing the impact range of each network rule. However, this approach is still not scalable for very large-scale networks which consist of tens of thousands of routers. In this paper, we enhanced our impact range detection algorithm for practical large-scale networks. Through evaluation in the network with more than 80,000 AC rules, we confirmed that our enhanced algorithm can achieve precise impact range detection in under 600 seconds.
2018-10-15
Santhosh Prabhu, University of Illinois at Urbana-Champaign, Gohar Irfan Chaudhry, University of Illinois at Urbana-Champaign, Brighten Godfrey, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2018.  High Coverage Testing of Softwarized Networks. ACM SIGCOMM 2018 Workshop on Security in Softwarized Networks: Prospects and Challenges.

Network operators face a challenge of ensuring correctness as networks grow more complex, in terms of scale and increasingly in terms of diversity of software components. Network-wide verification approaches can spot errors, but assume a simplified abstraction of the functionality of individual network devices, which may deviate from the real implementation. In this paper, we propose a technique for high-coverage testing of end-to-end network correctness using the real software that is deployed in these networks. Our design is effectively a hybrid, using an explicit-state model checker to explore all network-wide execution paths and event orderings, but executing real software as subroutines for each device. We show that this approach can detect correctness issues that would be missed both by existing verification and testing approaches, and a prototype implementation suggests the technique can scale to larger networks
with reasonable performance.

2018-05-24
Beckett, Ryan, Gupta, Aarti, Mahajan, Ratul, Walker, David.  2017.  A General Approach to Network Configuration Verification. Proceedings of the Conference of the ACM Special Interest Group on Data Communication. :155–168.

We present Minesweeper, a tool to verify that a network satisfies a wide range of intended properties such as reachability or isolation among nodes, waypointing, black holes, bounded path length, load-balancing, functional equivalence of two routers, and fault-tolerance. Minesweeper translates network configuration files into a logical formula that captures the stable states to which the network forwarding will converge as a result of interactions between routing protocols such as OSPF, BGP and static routes. It then combines the formula with constraints that describe the intended property. If the combined formula is satisfiable, there exists a stable state of the network in which the property does not hold. Otherwise, no stable state (if any) violates the property. We used Minesweeper to check four properties of 152 real networks from a large cloud provider. We found 120 violations, some of which are potentially serious security vulnerabilities. We also evaluated Minesweeper on synthetic benchmarks, and found that it can verify rich properties for networks with hundreds of routers in under five minutes. This performance is due to a suite of model-slicing and hoisting optimizations that we developed, which reduce runtime by over 460x for large networks.

2018-05-09
Dethise, Arnaud, Chiesa, Marco, Canini, Marco.  2017.  Privacy-Preserving Detection of Inter-Domain SDN Rules Overlaps. Proceedings of the SIGCOMM Posters and Demos. :6–8.
SDN approaches to inter-domain routing promise better traffic engineering, enhanced security, and higher automation. Yet, naïve deployment of SDN on the Internet is dangerous as the control-plane expressiveness of BGP is significantly more limited than the data-plane expressiveness of SDN, which allows fine-grained rules to deflect traffic from BGP's default routes. This mismatch may lead to incorrect forwarding behaviors such as forwarding loops and blackholes, ultimately hindering SDN deployment at the inter-domain level. In this work, we make a first step towards verifying the correctness of inter-domain forwarding state with a focus on loop freedom while keeping private the SDN rules, as they comprise confidential routing information. To this end, we design a simple yet powerful primitive that allows two networks to verify whether their SDN rules overlap, i.e., the set of packets matched by these rules is non-empty, without leaking any information about the SDN rules. We propose an efficient implementation of this primitive by using recent advancements in Secure Multi-Party Computation and we then leverage it as the main building block for designing a system that detects Internet-wide forwarding loops among any set of SDN-enabled Internet eXchange Points.
2016-11-11
Brighten Godfrey, University of Illions at Urbana-Champagin, Anduo Wang, Temple University, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2015.  A Hypothesis Testing Framework for Network Security.

We rely on network infrastructure to deliver critical services and ensure security. Yet networks today have reached a level of complexity that is far beyond our ability to have confidence in their correct behavior – resulting in significant time investment and security vulnerabilities that can cost millions of dollars, or worse. Motivated by this need for rigorous understanding of complex networks, I will give an overview of our or Science of Security lablet project, A Hypothesis Testing Framework for Network Security.

First, I will discuss the emerging field of network verification, which transforms network security by rigorously checking that intended behavior is correctly realized across the live running network. Our research developed a technique called data plane verification, which has discovered problems in operational environments and can verify hypotheses and security policies with millisecond-level latency in dynamic networks. In just a few years, data plane verification has moved from early research prototypes to production deployment. We have built on this technique to reason about hypotheses even under the temporal uncertainty inherent in a large distributed network. Second, I will discuss a new approach to reasoning about networks as databases that we can query to determine answers to behavioral questions and to actively control the network. This talk will span work by a large group of folks, including Anduo Wang, Wenxu an Zhou, Dong Jin, Jason Croft, Matthew Caesar, Ahmed Khurshid, and Xuan Zou.

Presented at the Illinois ITI Joint Trust and Security/Science of Security Seminar, September 15, 2015.