Visible to the public Biblio

Filters: Keyword is Computerized monitoring  [Clear All Filters]
2014-09-26
Schwartz, E.J., Avgerinos, T., Brumley, D..  2010.  All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask). Security and Privacy (SP), 2010 IEEE Symposium on. :317-331.

Dynamic taint analysis and forward symbolic execution are quickly becoming staple techniques in security analyses. Example applications of dynamic taint analysis and forward symbolic execution include malware analysis, input filter generation, test case generation, and vulnerability discovery. Despite the widespread usage of these two techniques, there has been little effort to formally define the algorithms and summarize the critical issues that arise when these techniques are used in typical security contexts. The contributions of this paper are two-fold. First, we precisely describe the algorithms for dynamic taint analysis and forward symbolic execution as extensions to the run-time semantics of a general language. Second, we highlight important implementation choices, common pitfalls, and considerations when using these techniques in a security context.

Sommer, R., Paxson, V..  2010.  Outside the Closed World: On Using Machine Learning for Network Intrusion Detection. Security and Privacy (SP), 2010 IEEE Symposium on. :305-316.

In network intrusion detection research, one popular strategy for finding attacks is monitoring a network's activity for anomalies: deviations from profiles of normality previously learned from benign traffic, typically identified using tools borrowed from the machine learning community. However, despite extensive academic research one finds a striking gap in terms of actual deployments of such systems: compared with other intrusion detection approaches, machine learning is rarely employed in operational "real world" settings. We examine the differences between the network intrusion detection problem and other areas where machine learning regularly finds much more success. Our main claim is that the task of finding attacks is fundamentally different from these other applications, making it significantly harder for the intrusion detection community to employ machine learning effectively. We support this claim by identifying challenges particular to network intrusion detection, and provide a set of guidelines meant to strengthen future research on anomaly detection.