Visible to the public Biblio

Filters: Keyword is app performance  [Clear All Filters]
2016-12-01
Huoran Li, Peking University, Xuan Lu, Peking University, Xuanzhe Liu, Peking University, Tao Xie, University of Illinois at Urbana-Champaign, Kaigui Bian, Peking University, Felix Xiaozhu Lin, Purdue University, Qiaozhu Mei, University of Michigan, Feng Feng, Wandoujia Lab.  2015.  Characterizing Smartphone Usage Patterns from Millions of Android Users. 2015 Internet Measurement Conference (IMC 2015).

The prevalence of smart devices has promoted the popularity of mobile applications (a.k.a. apps) in recent years. A number of interesting and important questions remain unanswered, such as why a user likes/dislikes an app, how an app becomes popular or eventually perishes, how a user selects apps to install and interacts with them, how frequently an app is used and how much trac it generates, etc. This paper presents an empirical analysis of app usage behaviors collected from millions of users of Wandoujia, a leading Android app marketplace in China. The dataset covers two types of user behaviors of using over 0.2 million Android apps, including (1) app management activities (i.e., installation, updating, and uninstallation) of over 0.8 million unique users and (2) app network trac from over 2 million unique users. We explore multiple aspects of such behavior data and present interesting patterns of app usage. The results provide many useful implications to the developers, users, and disseminators of mobile apps.