Visible to the public Biblio

Filters: Keyword is anti-virus  [Clear All Filters]
2022-04-19
Johnson, Andrew, Haddad, Rami J..  2021.  Evading Signature-Based Antivirus Software Using Custom Reverse Shell Exploit. SoutheastCon 2021. :1–6.
Antivirus software is considered to be the primary line of defense against malicious software in modern computing systems. The purpose of this paper is to expose exploitation that can evade Antivirus software that uses signature-based detection algorithms. In this paper, a novel approach was proposed to change the source code of a common Metasploit-Framework used to compile the reverse shell payload without altering its functionality but changing its signature. The proposed method introduced an additional stage to the shellcode program. Instead of the shellcode being generated and stored within the program, it was generated separately and stored on a remote server and then only accessed when the program is executed. This approach was able to reduce its detectability by the Antivirus software by 97% compared to a typical reverse shell program.
2021-04-08
Westland, T., Niu, N., Jha, R., Kapp, D., Kebede, T..  2020.  Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :37–44.
Automatically generating exploits for attacks receives much attention in security testing and auditing. However, little is known about the continuous effect of automatic attack generation and detection. In this paper, we develop an analytic model to understand the cost-benefit tradeoffs in light of the process of vulnerability discovery. We develop a three-phased model, suggesting that the cumulative malware detection has a productive period before the rate of gain flattens. As the detection mechanisms co-evolve, the gain will likely increase. We evaluate our analytic model by using an anti-virus tool to detect the thousands of Trojans automatically created. The anti-virus scanning results over five months show the validity of the model and point out future research directions.
2020-08-07
Safar, Jamie L., Tummala, Murali, McEachen, John C., Bollmann, Chad.  2019.  Modeling Worm Propagation and Insider Threat in Air-Gapped Network using Modified SEIQV Model. 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—6.
Computer worms pose a major threat to computer and communication networks due to the rapid speed at which they propagate. Biologically based epidemic models have been widely used to analyze the propagation of worms in computer networks. For an air-gapped network with an insider threat, we propose a modified Susceptible-Exposed-Infected-Quarantined-Vaccinated (SEIQV) model called the Susceptible-Exposed-Infected-Quarantined-Patched (SEIQP) model. We describe the assumptions that apply to this model, define a set of differential equations that characterize the system dynamics, and solve for the basic reproduction number. We then simulate and analyze the parameters controlled by the insider threat to determine where resources should be allocated to attain different objectives and results.
2019-08-05
Headrick, W. J., Dlugosz, A., Rajcok, P..  2018.  Information Assurance in modern ATE. 2018 IEEE AUTOTESTCON. :1–4.

For modern Automatic Test Equipment (ATE) one of the most daunting tasks is now Information Assurance (IA). What was once at most a secondary item consisting mainly of installing an Anti-Virus suite is now becoming one of the most important aspects of ATE. Given the current climate of IA it has become important to ensure ATE is kept safe from any breaches of security or loss of information. Even though most ATE are not on the Internet (or even on a network for many) they are still vulnerable to some of the same attack vectors plaguing common computers and other electronic devices. This paper will discuss some of the processes and procedures which must be used to ensure that modern ATE can continue to be used to test and detect faults in the systems they are designed to test. The common items that must be considered for ATE are as follows: The ATE system must have some form of Anti-Virus (as should all computers). The ATE system should have a minimum software footprint only providing the software needed to perform the task. The ATE system should be verified to have all the Operating System (OS) settings configured pursuant to the task it is intended to perform. The ATE OS settings should include password and password expiration settings to prevent access by anyone not expected to be on the system. The ATE system software should be written and constructed such that it in itself is not readily open to attack. The ATE system should be designed in a manner such that none of the instruments in the system can easily be attacked. The ATE system should insure any paths to the outside world (such as Ethernet or USB devices) are limited to only those required to perform the task it was designed for. These and many other common configuration concerns will be discussed in the paper.

2018-05-30
Wressnegger, Christian, Freeman, Kevin, Yamaguchi, Fabian, Rieck, Konrad.  2017.  Automatically Inferring Malware Signatures for Anti-Virus Assisted Attacks. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :587–598.
Although anti-virus software has significantly evolved over the last decade, classic signature matching based on byte patterns is still a prevalent concept for identifying security threats. Anti-virus signatures are a simple and fast detection mechanism that can complement more sophisticated analysis strategies. However, if signatures are not designed with care, they can turn from a defensive mechanism into an instrument of attack. In this paper, we present a novel method for automatically deriving signatures from anti-virus software and discuss how the extracted signatures can be used to attack sensible data with the aid of the virus scanner itself. To this end, we study the practicability of our approach using four commercial products and exemplary demonstrate anti-virus assisted attacks in three different scenarios.
2017-04-03
Kang, Chanhyun, Park, Noseong, Prakash, B. Aditya, Serra, Edoardo, Subrahmanian, V. S..  2016.  Ensemble Models for Data-driven Prediction of Malware Infections. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :583–592.

Given a history of detected malware attacks, can we predict the number of malware infections in a country? Can we do this for different malware and countries? This is an important question which has numerous implications for cyber security, right from designing better anti-virus software, to designing and implementing targeted patches to more accurately measuring the economic impact of breaches. This problem is compounded by the fact that, as externals, we can only detect a fraction of actual malware infections. In this paper we address this problem using data from Symantec covering more than 1.4 million hosts and 50 malware spread across 2 years and multiple countries. We first carefully design domain-based features from both malware and machine-hosts perspectives. Secondly, inspired by epidemiological and information diffusion models, we design a novel temporal non-linear model for malware spread and detection. Finally we present ESM, an ensemble-based approach which combines both these methods to construct a more accurate algorithm. Using extensive experiments spanning multiple malware and countries, we show that ESM can effectively predict malware infection ratios over time (both the actual number and trend) upto 4 times better compared to several baselines on various metrics. Furthermore, ESM's performance is stable and robust even when the number of detected infections is low.

2017-02-27
Li-xiong, Z., Xiao-lin, X., Jia, L., Lu, Z., Xuan-chen, P., Zhi-yuan, M., Li-hong, Z..  2015.  Malicious URL prediction based on community detection. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Traditional Anti-virus technology is primarily based on static analysis and dynamic monitoring. However, both technologies are heavily depended on application files, which increase the risk of being attacked, wasting of time and network bandwidth. In this study, we propose a new graph-based method, through which we can preliminary detect malicious URL without application file. First, the relationship between URLs can be found through the relationship between people and URLs. Then the association rules can be mined with confidence of each frequent URLs. Secondly, the networks of URLs was built through the association rules. When the networks of URLs were finished, we clustered the date with modularity to detect communities and every community represents different types of URLs. We suppose that a URL has association with one community, then the URL is malicious probably. In our experiments, we successfully captured 82 % of malicious samples, getting a higher capture than using traditional methods.