Biblio
This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.
Policy design is an important part of software development. As security breaches increase in variety, designing a security policy that addresses all potential breaches becomes a nontrivial task. A complete security policy would specify rules to prevent breaches. Systematically determining which, if any, policy clause has been violated by a reported breach is a means for identifying gaps in a policy. Our research goal is to help analysts measure the gaps between security policies and reported breaches by developing a systematic process based on semantic reasoning. We propose SEMAVER, a framework for determining coverage of breaches by policies via comparison of individual policy clauses and breach descriptions. We represent a security policy as a set of norms. Norms (commitments, authorizations, and prohibitions) describe expected behaviors of users, and formalize who is accountable to whom and for what. A breach corresponds to a norm violation. We develop a semantic similarity metric for pairwise comparison between the norm that represents a policy clause and the norm that has been violated by a reported breach. We use the US Health Insurance Portability and Accountability Act (HIPAA) as a case study. Our investigation of a subset of the breaches reported by the US Department of Health and Human Services (HHS) reveals the gaps between HIPAA and reported breaches, leading to a coverage of 65%. Additionally, our classification of the 1,577 HHS breaches shows that 44% of the breaches are accidental misuses and 56% are malicious misuses. We find that HIPAA's gaps regarding accidental misuses are significantly larger than its gaps regarding malicious misuses.