Visible to the public Biblio

Filters: Keyword is self-adaptive systems  [Clear All Filters]
2022-06-10
Bures, Tomas, Gerostathopoulos, Ilias, Hnětynka, Petr, Seifermann, Stephan, Walter, Maximilian, Heinrich, Robert.  2021.  Aspect-Oriented Adaptation of Access Control Rules. 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). :363–370.
Cyber-physical systems (CPS) and IoT systems are nowadays commonly designed as self-adaptive, endowing them with the ability to dynamically reconFigure to reflect their changing environment. This adaptation concerns also the security, as one of the most important properties of these systems. Though the state of the art on adaptivity in terms of security related to these systems can often deal well with fully anticipated situations in the environment, it becomes a challenge to deal with situations that are not or only partially anticipated. This uncertainty is however omnipresent in these systems due to humans in the loop, open-endedness and only partial understanding of the processes happening in the environment. In this paper, we partially address this challenge by featuring an approach for tackling access control in face of partially unanticipated situations. We base our solution on special kind of aspects that build on existing access control system and create a second level of adaptation that addresses the partially unanticipated situations by modifying access control rules. The approach is based on our previous work where we have analyzed and classified uncertainty in security and trust in such systems and have outlined the idea of access-control related situational patterns. The aspects that we present in this paper serve as means for application-specific specialization of the situational patterns. We showcase our approach on a simplified but real-life example in the domain of Industry 4.0 that comes from one of our industrial projects.
2020-10-12
D'Angelo, Mirko, Gerasimou, Simos, Ghahremani, Sona, Grohmann, Johannes, Nunes, Ingrid, Pournaras, Evangelos, Tomforde, Sven.  2019.  On Learning in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :13–24.
Collective self-adaptive systems (CSAS) are distributed and interconnected systems composed of multiple agents that can perform complex tasks such as environmental data collection, search and rescue operations, and discovery of natural resources. By providing individual agents with learning capabilities, CSAS can cope with challenges related to distributed sensing and decision-making and operate in uncertain environments. This unique characteristic of CSAS enables the collective to exhibit robust behaviour while achieving system-wide and agent-specific goals. Although learning has been explored in many CSAS applications, selecting suitable learning models and techniques remains a significant challenge that is heavily influenced by expert knowledge. We address this gap by performing a multifaceted analysis of existing CSAS with learning capabilities reported in the literature. Based on this analysis, we introduce a 3D framework that illustrates the learning aspects of CSAS considering the dimensions of autonomy, knowledge access, and behaviour, and facilitates the selection of learning techniques and models. Finally, using example applications from this analysis, we derive open challenges and highlight the need for research on collaborative, resilient and privacy-aware mechanisms for CSAS.
2019-03-06
Peruma, Anthony, Krutz, Daniel E..  2018.  Security: A Critical Quality Attribute in Self-Adaptive Systems. Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems. :188-189.

Self-Adaptive Systems (SAS) are revolutionizing many aspects of our society. From server clusters to autonomous vehicles, SAS are becoming more ubiquitous and essential to our world. Security is frequently a priority for these systems as many SAS conduct mission-critical operations, or work with sensitive information. Fortunately, security is being more recognized as an indispensable aspect of virtually all aspects of computing systems, in all phases of software development. Despite the growing prominence in security, from computing education to vulnerability detection systems, it is just another concern of creating good software. Despite how critical security is, it is a quality attribute like other aspects such as reliability, stability, or adaptability in a SAS.

2017-06-05
Fredericks, Erik M..  2016.  Automatically Hardening a Self-adaptive System Against Uncertainty. Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. :16–27.

A self-adaptive system (SAS) can reconfigure to adapt to potentially adverse conditions that can manifest in the environment at run time. However, the SAS may not have been explicitly developed with such conditions in mind, thereby requiring additional configuration states or updates to the requirements specification for the SAS to provide assurance that it continually satisfies its requirements and delivers acceptable behavior. By discovering both adverse environmental conditions and the SAS configuration states that can mitigate those conditions at design time, an SAS can be hardened against uncertainty prior to deployment, effectively extending its lifetime. This paper introduces two search-based techniques, Ragnarok and Valkyrie, for hardening an SAS against uncertainty. Ragnarok automatically discovers adverse conditions that negatively impact an SAS by searching for environmental conditions that explicitly cause requirements violations. Valkyrie then searches for SAS configurations that improve requirements satisficement throughout execution in response to discovered adverse environmental conditions. Together, these techniques can be used to improve the design and implementation of an SAS. We apply each technique to an industry-provided remote data mirroring application that can self-reconfigure in response to unknown or adverse conditions, such as network message delays, network link failures, and sensor noise.

2017-02-27
Mulcahy, J. J., Huang, S..  2015.  An autonomic approach to extend the business value of a legacy order fulfillment system. 2015 Annual IEEE Systems Conference (SysCon) Proceedings. :595–600.

In the modern retailing industry, many enterprise resource planning (ERP) systems are considered legacy software systems that have become too expensive to replace and too costly to re-engineer. Countering the need to maintain and extend the business value of these systems is the need to do so in the simplest, cheapest, and least risky manner available. There are a number of approaches used by software engineers to mitigate the negative impact of evolving a legacy systems, including leveraging service-oriented architecture to automate manual tasks previously performed by humans. A relatively recent approach in software engineering focuses upon implementing self-managing attributes, or “autonomic” behavior in software applications and systems of applications in order to reduce or eliminate the need for human monitoring and intervention. Entire systems can be autonomic or they can be hybrid systems that implement one or more autonomic components to communicate with external systems. In this paper, we describe a commercial development project in which a legacy multi-channel commerce enterprise resource planning system was extended with service-oriented architecture an autonomic control loop design to communicate with an external third-party security screening provider. The goal was to reduce the cost of the human labor necessary to screen an ever-increasing volume of orders and to reduce the potential for human error in the screening process. The solution automated what was previously an inefficient, incomplete, and potentially error-prone manual process by inserting a new autonomic software component into the existing order fulfillment workflow.