Biblio
Statistical structure learning (SSL)-based approaches have been employed in the recent years to detect different types of anomalies in a variety of cyber-physical systems (CPS). Although these approaches outperform conventional methods in the literature, their computational complexity, need for large number of measurements and centralized computations have limited their applicability to large-scale networks. In this work, we propose a distributed, multi-agent maximum likelihood (ML) approach to detect anomalies in smart grid applications aiming at reducing computational complexity, as well as preserving data privacy among different players in the network. The proposed multi-agent detector breaks the original ML problem into several local (smaller) ML optimization problems coupled by the alternating direction method of multipliers (ADMM). Then, these local ML problems are solved by their corresponding agents, eventually resulting in the construction of the global solution (network's information matrix). The numerical results obtained from two IEEE test (power transmission) systems confirm the accuracy and efficiency of the proposed approach for anomaly detection.
In January 2017 encrypted Internet traffic surpassed non-encrypted traffic. Although encryption increases security, it also masks intrusions and attacks by blocking the access to packet contents and traffic features, therefore making data analysis unfeasible. In spite of the strong effect of encryption, its impact has been scarcely investigated in the field. In this paper we study how encryption affects flow feature spaces and machine learning-based attack detection. We propose a new cross-layer feature vector that simultaneously represents traffic at three different levels: application, conversation, and endpoint behavior. We analyze its behavior under TLS and IPSec encryption and evaluate the efficacy with recent network traffic datasets and by using Random Forests classifiers. The cross-layer multi-key approach shows excellent attack detection in spite of TLS encryption. When IPsec is applied, the reduced variant obtains satisfactory detection for botnets, yet considerable performance drops for other types of attacks. The high complexity of network traffic is unfeasible for monolithic data analysis solutions, therefore requiring cross-layer analysis for which the multi-key vector becomes a powerful profiling core.
As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices' behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.