Visible to the public Biblio

Filters: Keyword is TPC  [Clear All Filters]
2018-01-10
Patrignani, M., Garg, D..  2017.  Secure Compilation and Hyperproperty Preservation. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :392–404.

The area of secure compilation aims to design compilers which produce hardened code that can withstand attacks from low-level co-linked components. So far, there is no formal correctness criterion for secure compilers that comes with a clear understanding of what security properties the criterion actually provides. Ideally, we would like a criterion that, if fulfilled by a compiler, guarantees that large classes of security properties of source language programs continue to hold in the compiled program, even as the compiled program is run against adversaries with low-level attack capabilities. This paper provides such a novel correctness criterion for secure compilers, called trace-preserving compilation (TPC). We show that TPC preserves a large class of security properties, namely all safety hyperproperties. Further, we show that TPC preserves more properties than full abstraction, the de-facto criterion used for secure compilation. Then, we show that several fully abstract compilers described in literature satisfy an additional, common property, which implies that they also satisfy TPC. As an illustration, we prove that a fully abstract compiler from a typed source language to an untyped target language satisfies TPC.

2017-02-10
T. S. Chaware, B. K. Mishra.  2015.  "Secure communication using TPC and chaotic encryption". 2015 International Conference on Information Processing (ICIP). :615-620.

Compression, encryption, encoding and modulation at the transmitter side and reverse process at the receiver side are the major processes in any wireless communication system. All these steps were carried out separately before. But, in 1978 R. J. McEliece had proposed the concept of combining security and channel encoding techniques together. Many schemes are proposed by different researchers for this combine approach. Sharing the information securely, but at the same time maintaining acceptable bit error rate in such combine system is difficult. In this paper, a new technique for robust and secure wireless transmission of image combining Turbo Product Code (TPC) with chaotic encryption is proposed. Logistic map is used for chaotic encryption and TPC for channel encoding. Simulation results for this combined system are analyzed and it shows that TPC and chaotic combination gives secure transmission with acceptable data rate.