Biblio
Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-world OSNs, leading to low detection accuracy. To address this challenge, we explore users' activities to assist sybil detection. The intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social and activity network (SAN), a two-layer hyper-graph that unifies users' friendships and their activities, to fully utilize users' activities. We also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design Sybil SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil SAN. We develop an efficient iterative algorithm to compute the detection metric for Sybil SAN, and derive the number of rounds needed to guarantee the convergence. We use "matrix perturbation theory" to bound the detection error when sybils launch many friendship attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil SAN is highly robust against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low accuracy.
We show that competitive engagements within the agents of a network can result in resilience in consensus dynamics with respect to the presence of an adversary. We first show that interconnections with an adversary, with linear dynamics, can make the consensus dynamics diverge, or drive its evolution to a state different from the average.We then introduce a second network, interconnected with the original network via an engagement topology. This network has no information about the adversary and each agent in it has only access to partial information about the state of the other network. We introduce a dynamics on the coupled network which corresponds to a saddle-point dynamics of a certain zero-sum game and is distributed over each network, as well as the engagement topology. We show that, by appropriately choosing a design parameter corresponding to the competition between these two networks, the coupled dynamics can be made resilient with respect to the presence of the adversary.Our technical approach combines notions of graph theory and stable perturbations of nonsymmetric matrices.We demonstrate our results on an example of kinematic-based flocking in presence of an adversary.