Visible to the public Biblio

Filters: Keyword is Forgery  [Clear All Filters]
2023-08-17
Ali, Atif, Jadoon, Yasir Khan, Farid, Zulqarnain, Ahmad, Munir, Abidi, Naseem, Alzoubi, Haitham M., Alzoubi, Ali A..  2022.  The Threat of Deep Fake Technology to Trusted Identity Management. 2022 International Conference on Cyber Resilience (ICCR). :1—5.
With the rapid development of artificial intelligence technology, deepfake technology based on deep learning is receiving more and more attention from society or the industry. While enriching people's cultural and entertainment life, in-depth fakes technology has also caused many social problems, especially potential risks to managing network credible identities. With the continuous advancement of deep fakes technology, the security threats and trust crisis caused by it will become more serious. It is urgent to take adequate measures to curb the abuse risk of deep fakes. The article first introduces the principles and characteristics of deep fakes technology and then deeply analyzes its severe challenges to network trusted identity management. Finally, it researches the supervision and technical level and puts forward targeted preventive countermeasures.
2023-06-29
Sahib, Ihsan, AlAsady, Tawfiq Abd Alkhaliq.  2022.  Deep fake Image Detection based on Modified minimized Xception Net and DenseNet. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :355–360.

This paper deals with the problem of image forgery detection because of the problems it causes. Where The Fake im-ages can lead to social problems, for example, misleading the public opinion on political or religious personages, de-faming celebrities and people, and Presenting them in a law court as evidence, may Doing mislead the court. This work proposes a deep learning approach based on Deep CNN (Convolutional Neural Network) Architecture, to detect fake images. The network is based on a modified structure of Xception net, CNN based on depthwise separable convolution layers. After extracting the feature maps, pooling layers are used with dense connection with Xception output, to in-crease feature maps. Inspired by the idea of a densenet network. On the other hand, the work uses the YCbCr color system for images, which gave better Accuracy of %99.93, more than RGB, HSV, and Lab or other color systems.

ISSN: 2831-753X

Bodapati, Nagaeswari, Pooja, N., Varshini, E. Amrutha, Jyothi, R. Naga Sravana.  2022.  Observations on the Theory of Digital Signatures and Cryptographic Hash Functions. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
As the demand for effective information protection grows, security has become the primary concern in protecting such data from attackers. Cryptography is one of the methods for safeguarding such information. It is a method of storing and distributing data in a specific format that can only be read and processed by the intended recipient. It offers a variety of security services like integrity, authentication, confidentiality and non-repudiation, Malicious. Confidentiality service is required for preventing disclosure of information to unauthorized parties. In this paper, there are no ideal hash functions that dwell in digital signature concepts is proved.
2022-07-14
Sintyaningrum, Desti Eka, Muladi, Ashar, Muhammad.  2021.  The Encryption of Electronic Professional Certificate by Using Digital Signature and QR Code. 2021 International Conference on Converging Technology in Electrical and Information Engineering (ICCTEIE). :19–24.
In Indonesia, there have been many certificates forgery happened. The lack of security system for the certificate and the difficulty in verification process toward the authenticity certificate become the main factor of the certificate forgery cases happen. The aim of this research is to improve the security system such digital signature and QR code to authenticate the authenticity certificate and to facilitate the user in verify their certificate and also to minimize the certificate forgery cases. The aim of this research is to improve the security system such digital signature and QR code to authenticate the authenticity certificate and to facilitate the user in verify their certificate and also to minimize the certificate forgery cases. The application is built in web system to facilitate the user to access it everywhere and any time. This research uses Research and Development method for problem analysis and to develop application using Software Development Life Cycle method with waterfall approach. Black box testing is chosen as testing method for each function in this system. The result of this research is creatcate application that’s designed to support the publishing and the verification of the electronic authenticity certificate by online. There are two main schemes in system: the scheme in making e-certificate and the scheme of verification QR Code. There is the electronic professional certificate application by applying digital signature and QR Code. It can publish e-certificate that can prevent from criminal action such certificate forgery, that’s showed in implementation and can be proven in test.
2022-04-25
Khichi, Manish, Kumar Yadav, Rajesh.  2021.  A Threat of Deepfakes as a Weapon on Digital Platform and their Detection Methods. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01–08.
Advances in machine learning, deep learning, and Artificial Intelligence(AI) allows people to exchange other people's faces and voices in videos to make it look like what they did or say whatever you want to say. These videos and photos are called “deepfake” and are getting more complicated every day and this has lawmakers worried. This technology uses machine learning technology to provide computers with real data about images, so that we can make forgeries. The creators of Deepfake use artificial intelligence and machine learning algorithms to mimic the work and characteristics of real humans. It differs from counterfeit traditional media because it is difficult to identify. As In the 2020 elections loomed, AI-generated deepfakes were hit the news cycle. DeepFakes threatens facial recognition and online content. This deception can be dangerous, because if used incorrectly, this technique can be abused. Fake video, voice, and audio clips can do enormous damage. This paper examines the algorithms used to generate deepfakes as well as the methods proposed to detect them. We go through the threats, research patterns, and future directions for deepfake technologies in detail. This research provides a detailed description of deep imitation technology and encourages the creation of new and more powerful methods to deal with increasingly severe deep imitation by studying the history of deep imitation.
2022-03-22
Badra, Mohamad, Borghol, Rouba.  2021.  Privacy-Preserving and Efficient Aggregation for Smart Grid based on Blockchain. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—3.
In this paper, we address the problem of privacy-preserving of the consumer's energy measurements in the context of the SG. To this end, we present a blockchain-based approach to preserve the privacy for smart grid users and to detect data forgery, replay attacks, and data injection attacks.
2022-02-04
Chand, Ravinesh, Valluri, Maheswara Rao, Khan, MGM.  2021.  Digital Signature Scheme over Lattices. 2021 25th International Conference on Circuits, Systems, Communications and Computers (CSCC). :71–78.
With the rapid advancements in information technology, data security has become an indispensable component. Cryptography performs a significant role in establishing information security. Computational problems have been utilized extensively by cryptographers to construct digital signature schemes. Digital signature schemes offer security services such as confidentiality, authenticity, integrity, and non-repudiation of a message. This paper proposes a modification of the Dilithium signature scheme that is secure against unforgeability attack based on the hardness of lattice problems such as Learning With Errors and Short Integer Solution over lattices. Using the rejection sampling technique, data is sampled from a uniform distribution to generate keys that are expanded into a matrix. The keys are hashed and signed by the sender to generate a message, which is then accepted by the receiver upon verification. Finally, the security analysis for the proposed signature scheme is provided with a strong emphasis on the security of the secret key. We prove that the attacker cannot forge a signature on a message, and recommended parameters are proposed.
2022-01-25
Saleem, Summra, Dilawari, Aniqa, Khan, Usman Ghani.  2021.  Spoofed Voice Detection using Dense Features of STFT and MDCT Spectrograms. 2021 International Conference on Artificial Intelligence (ICAI). :56–61.
Attestation of audio signals for recognition of forgery in voice is challenging task. In this research work, a deep convolutional neural network (CNN) is utilized to detect audio operations i.e. pitch shifted and amplitude varied signals. Short-time Fourier transform (STFT) and Modified Discrete Cosine Transform (MDCT) features are chosen for audio processing and their plotted patterns are fed to CNN. Experimental results show that our model can successfully distinguish tampered signals to facilitate the audio authentication on TIMIT dataset. Proposed CNN architecture can distinguish spoofed voices of shifting pitch with accuracy of 97.55% and of varying amplitude with accuracy of 98.85%.
2021-11-08
Rankothge, W.H., Randeniya, S M.N..  2020.  Identification and Mitigation Tool For Cross-Site Request Forgery (CSRF). 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC). :1–5.
Most organizations use web applications for sharing resources and communication via the internet and information security is one of the biggest concerns in most organizations. Web applications are becoming vulnerable to threats and malicious attacks every day, which lead to violation of confidentiality, integrity, and availability of information assets.We have proposed and implemented a new automated tool for the identification and mitigation of Cross-Site Request Forgery (CSRF) vulnerability. A secret token pattern based has been used in the automated tool, which applies effective security mechanism on PHP based web applications, without damaging the content and its functionalities, where the authenticated users can perform web activities securely.
2021-08-17
Shiwei, Huo, Yubo, Tang, Shaojun, Liu, Balin, Tian.  2020.  Security Analysis and Improvement of Identity-based Key Management Scheme for Airborne Ad Hoc Networks. 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :209–213.
An identity-based distributed key management scheme for airborne ad hoc networks is analyzed. It is demonstrated that in the generation phase of user private key, the user identity certificate is transmitted in the public channel, so that the attacker can use the intercepted identity certificate to fake the legitimate node and cheat the distributed key generation center to generate private key for it. Then, an improved authentication scheme is proposed. It constructs the signature of timestamp using the private key of the user node as authentication proof, so that the attacker can't forge the authentication information. It is showed that the improved scheme can effectively resist the forgery attack, and further reduce the computing cost of user nodes while realizing all the functions of the original scheme.
2021-05-03
Zalasiński, Marcin, Cpałka, Krzysztof, Łapa, Krystian.  2020.  An interpretable fuzzy system in the on-line signature scalable verification. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–9.
This paper proposes new original solutions for the use of interpretable flexible fuzzy systems for identity verification based on an on-line signature. Such solutions must be scalable because the verification of the identity of each user must be carried out independently of one another. In addition, a large number of system users limit the possibilities of iterative system learning. An important issue is the ability to interpret the system rules because it explains how the similarity of test signatures to reference signature templates is assessed. In this paper, we propose an approach that meets all of the above requirements and works effectively for the on-line signatures' database used in the simulations.
2021-04-08
Mayer, O., Stamm, M. C..  2020.  Forensic Similarity for Digital Images. IEEE Transactions on Information Forensics and Security. 15:1331—1346.
In this paper, we introduce a new digital image forensics approach called forensic similarity, which determines whether two image patches contain the same forensic trace or different forensic traces. One benefit of this approach is that prior knowledge, e.g., training samples, of a forensic trace is not required to make a forensic similarity decision on it in the future. To do this, we propose a two-part deep-learning system composed of a convolutional neural network-based feature extractor and a three-layer neural network, called the similarity network. This system maps the pairs of image patches to a score indicating whether they contain the same or different forensic traces. We evaluated the system accuracy of determining whether two image patches were captured by the same or different camera model and manipulated by the same or a different editing operation and the same or a different manipulation parameter, given a particular editing operation. Experiments demonstrate applicability to a variety of forensic traces and importantly show efficacy on “unknown” forensic traces that were not used to train the system. Experiments also show that the proposed system significantly improves upon prior art, reducing error rates by more than half. Furthermore, we demonstrated the utility of the forensic similarity approach in two practical applications: forgery detection and localization, and database consistency verification.
Rhee, K. H..  2020.  Composition of Visual Feature Vector Pattern for Deep Learning in Image Forensics. IEEE Access. 8:188970—188980.

In image forensics, to determine whether the image is impurely transformed, it extracts and examines the features included in the suspicious image. In general, the features extracted for the detection of forgery images are based on numerical values, so it is somewhat unreasonable to use in the CNN structure for image classification. In this paper, the extraction method of a feature vector is using a least-squares solution. Treat a suspicious image like a matrix and its solution to be coefficients as the feature vector. Get two solutions from two images of the original and its median filter residual (MFR). Subsequently, the two features were formed into a visualized pattern and then fed into CNN deep learning to classify the various transformed images. A new structure of the CNN net layer was also designed by hybrid with the inception module and the residual block to classify visualized feature vector patterns. The performance of the proposed image forensics detection (IFD) scheme was measured with the seven transformed types of image: average filtered (window size: 3 × 3), gaussian filtered (window size: 3 × 3), JPEG compressed (quality factor: 90, 70), median filtered (window size: 3 × 3, 5 × 5), and unaltered. The visualized patterns are fed into the image input layer of the designed CNN hybrid model. Throughout the experiment, the accuracy of median filtering detection was 98% over. Also, the area under the curve (AUC) by sensitivity (TP: true positive rate) and 1-specificity (FP: false positive rate) results of the proposed IFD scheme approached to `1' on the designed CNN hybrid model. Experimental results show high efficiency and performance to classify the various transformed images. Therefore, the grade evaluation of the proposed scheme is “Excellent (A)”.

Zheng, Y., Cao, Y., Chang, C..  2020.  A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
2021-03-17
Wang, W., Zhang, X., Dong, L., Fan, Y., Diao, X., Xu, T..  2020.  Network Attack Detection based on Domain Attack Behavior Analysis. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :962—965.

Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.

2021-02-01
Bai, Y., Guo, Y., Wei, J., Lu, L., Wang, R., Wang, Y..  2020.  Fake Generated Painting Detection Via Frequency Analysis. 2020 IEEE International Conference on Image Processing (ICIP). :1256–1260.
With the development of deep neural networks, digital fake paintings can be generated by various style transfer algorithms. To detect the fake generated paintings, we analyze the fake generated and real paintings in Fourier frequency domain and observe statistical differences and artifacts. Based on our observations, we propose Fake Generated Painting Detection via Frequency Analysis (FGPD-FA) by extracting three types of features in frequency domain. Besides, we also propose a digital fake painting detection database for assessing the proposed method. Experimental results demonstrate the excellence of the proposed method in different testing conditions.
2021-01-15
Brockschmidt, J., Shang, J., Wu, J..  2019.  On the Generality of Facial Forgery Detection. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :43—47.
A variety of architectures have been designed or repurposed for the task of facial forgery detection. While many of these designs have seen great success, they largely fail to address challenges these models may face in practice. A major challenge is posed by generality, wherein models must be prepared to perform in a variety of domains. In this paper, we investigate the ability of state-of-the-art facial forgery detection architectures to generalize. We first propose two criteria for generality: reliably detecting multiple spoofing techniques and reliably detecting unseen spoofing techniques. We then devise experiments which measure how a given architecture performs against these criteria. Our analysis focuses on two state-of-the-art facial forgery detection architectures, MesoNet and XceptionNet, both being convolutional neural networks (CNNs). Our experiments use samples from six state-of-the-art facial forgery techniques: Deepfakes, Face2Face, FaceSwap, GANnotation, ICface, and X2Face. We find MesoNet and XceptionNet show potential to generalize to multiple spoofing techniques but with a slight trade-off in accuracy, and largely fail against unseen techniques. We loosely extrapolate these results to similar CNN architectures and emphasize the need for better architectures to meet the challenges of generality.
Đorđević, M., Milivojević, M., Gavrovska, A..  2019.  DeepFake Video Analysis using SIFT Features. 2019 27th Telecommunications Forum (℡FOR). :1—4.
Recent advantages in changing faces using DeepFake algorithms, which replace a face of one person with a face of another, truly represent what artificial intelligence and deep learning are capable of. Deepfakes in still images or video clips represent forgeries and tampered visual information. They are becoming increasingly successful and even difficult to notice in some cases. In this paper we analyze deepfakes using SIFT (Scale-Invariant Feature Transform) features. The experimental results show that in deepfake analysis using SIFT keypoints can be considered valuable.
Katarya, R., Lal, A..  2020.  A Study on Combating Emerging Threat of Deepfake Weaponization. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :485—490.
A breakthrough in the emerging use of machine learning and deep learning is the concept of autoencoders and GAN (Generative Adversarial Networks), architectures that can generate believable synthetic content called deepfakes. The threat lies when these low-tech doctored images, videos, and audios blur the line between fake and genuine content and are used as weapons to cause damage to an unprecedented degree. This paper presents a survey of the underlying technology of deepfakes and methods proposed for their detection. Based on a detailed study of all the proposed models of detection, this paper presents SSTNet as the best model to date, that uses spatial, temporal, and steganalysis for detection. The threat posed by document and signature forgery, which is yet to be explored by researchers, has also been highlighted in this paper. This paper concludes with the discussion of research directions in this field and the development of more robust techniques to deal with the increasing threats surrounding deepfake technology.
2020-03-09
Calzavara, Stefano, Conti, Mauro, Focardi, Riccardo, Rabitti, Alvise, Tolomei, Gabriele.  2019.  Mitch: A Machine Learning Approach to the Black-Box Detection of CSRF Vulnerabilities. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :528–543.

Cross-Site Request Forgery (CSRF) is one of the oldest and simplest attacks on the Web, yet it is still effective on many websites and it can lead to severe consequences, such as economic losses and account takeovers. Unfortunately, tools and techniques proposed so far to identify CSRF vulnerabilities either need manual reviewing by human experts or assume the availability of the source code of the web application. In this paper we present Mitch, the first machine learning solution for the black-box detection of CSRF vulnerabilities. At the core of Mitch there is an automated detector of sensitive HTTP requests, i.e., requests which require protection against CSRF for security reasons. We trained the detector using supervised learning techniques on a dataset of 5,828 HTTP requests collected on popular websites, which we make available to other security researchers. Our solution outperforms existing detection heuristics proposed in the literature, allowing us to identify 35 new CSRF vulnerabilities on 20 major websites and 3 previously undetected CSRF vulnerabilities on production software already analyzed using a state-of-the-art tool.

2018-05-09
Luo, H. S., Jiang, R., Pei, B..  2017.  Cryptanalysis and Countermeasures on Dynamic-Hash-Table Based Public Auditing for Secure Cloud Storage. 2017 10th International Symposium on Computational Intelligence and Design (ISCID). 1:33–36.

Cloud storage can provide outsourcing data services for both organizations and individuals. However, cloud storage still faces many challenges, e.g., public integrity auditing, the support of dynamic data, and low computational audit cost. To solve the problems, a number of techniques have been proposed. Recently, Tian et al. proposed a novel public auditing scheme for secure cloud storage based on a new data structure DHT. The authors claimed that their scheme was proven to be secure. Unfortunately, through our security analysis, we find that the scheme suffers from one attack and one security shortage. The attack is that an adversary can forge the data to destroy the correctness of files without being detected. The shortage of the scheme is that the updating operations for data blocks is vulnerable and easy to be modified. Finally, we give our countermeasures to remedy the security problems.

2014-09-26
Bau, J., Bursztein, E., Gupta, D., Mitchell, J..  2010.  State of the Art: Automated Black-Box Web Application Vulnerability Testing. Security and Privacy (SP), 2010 IEEE Symposium on. :332-345.

Black-box web application vulnerability scanners are automated tools that probe web applications for security vulnerabilities. In order to assess the current state of the art, we obtained access to eight leading tools and carried out a study of: (i) the class of vulnerabilities tested by these scanners, (ii) their effectiveness against target vulnerabilities, and (iii) the relevance of the target vulnerabilities to vulnerabilities found in the wild. To conduct our study we used a custom web application vulnerable to known and projected vulnerabilities, and previous versions of widely used web applications containing known vulnerabilities. Our results show the promise and effectiveness of automated tools, as a group, and also some limitations. In particular, "stored" forms of Cross Site Scripting (XSS) and SQL Injection (SQLI) vulnerabilities are not currently found by many tools. Because our goal is to assess the potential of future research, not to evaluate specific vendors, we do not report comparative data or make any recommendations about purchase of specific tools.