Biblio
Security plays a major role in data transmission and reception. Providing high security is indispensable in communication systems. The RSA (Rivest-Shamir-Adleman) cryptosystem is used widely in cryptographic applications as it offers highly secured transmission. RSA cryptosystem uses Montgomery multipliers and it involves modular exponentiation process which is attained by performing repeated modular-multiplications. This leads to high latency and owing to improve the speed of multiplier, highly efficient modular multiplication methodology needs to be applied. In the conventional methodology, Carry Save Adder (CSA) is used in the multiplication and it consumes more area and it has larger delay, but in the suggested methodology, the Reverse Carry Propagate (RCP) adder is used in the place of CSA adder and the obtained output shows promising results in terms of area and latency. The simulation is done with Xilinx ISE design suite. The proposed multiplier can be used effectively in signal processing, image processing and security based applications.
With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.
Digital signatures are replacing paper-based work to make life easier for customers and employees in various industries. We rigorously use RSA and Elliptic Curve Cryptography (ECC) for public key cryptographic algorithms. Nowadays ECDSA (Elliptical Curve Digital Signature Algorithm) gaining more popularity than the RSA algorithm because of the better performance of ECDSA over RSA. The main advantage of ECC over RSA is ECC provides the same level of security with less key size and overhead than RSA. This paper focuses on a brief review of the performance of ECDSA and RSA in various aspects like time, security and power. This review tells us about why ECC has become the latest trend in the present cryptographic scenario.
The purpose of this research is to propose a new mathematical model, designed to evaluate the security of cryptosystems. This model is a mixture of ideas from two basic mathematical theories, information theory and game theory. The role of information theory is assigning the model with security criteria of the cryptosystems. The role of game theory was to produce the value of the game which is representing the outcome of these criteria, which finally refers to cryptosystem's security. The proposed model support an accurate and mathematical way to evaluate the security of cryptosystems by unifying the criteria resulted from information theory and produce a unique reasonable value.
Data storage in cloud should come along with high safety and confidentiality. It is accountability of cloud service provider to guarantee the availability and security of client data. There exist various alternatives for storage services but confidentiality and complexity solutions for database as a service are still not satisfactory. Proposed system gives alternative solution for database as a service that integrates benefits of different services along with advance encryption techniques. It yields possibility of applying concurrency on encrypted data. This alternative provides supporting facility to connect dispersed clients with elimination of intermediate proxy by which simplicity can acquired. Performance of proposed system evaluated on basis of theoretical analyses.
The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.
Robust and stringent fault detection and correction techniques in executing Advanced Encryption Standard (AES) are still interesting issues for many critical applications. The purpose of fault detection and correction techniques is not only to ensure the reliability of a cryptosystem, but also protect the system against side channel attacks. Such errors could result due to a fault injection attack, production faults, noise or radiation effects in deep space. Devising a proper error control mechanisms for AES cipher during execution would improve both system reliability and security. In this work a novel fault detection and correction algorithm is proposed. The proposed mechanism is making use of the linear mappings of AES round structure to detect errors in the ShiftRow (SR) and MixColumn (MC) transformations. The error correction is achieved by creating temporary redundant check words through the combined SR and MC mapping to create in case of errors an error syndrome leading to error correction with relatively minor additional complexity. The proposed technique is making use of an error detecting and correcting capability in the combined mapping of SR and MC rather than detecting and/or correcting errors in each transformation separately. The proposed technique is making use especially of the MC mapping exhibiting efficient ECC properties, which can be deployed to simplify the design of a fault-tolerance technique. The performance of the algorithm proposed is evaluated by a simulated system model in FPGA technology. The simulation results demonstrate the ability to reach relatively high fault coverage with error correction up to four bytes of execution errors in the merged transformation SR-MC. The overall gate complexity overhead of the resulting system is estimated for proposed technique in FPGA technology.