Visible to the public Biblio

Filters: Keyword is Advanced Encryption Standard (AES) Algorithm  [Clear All Filters]
2021-09-01
Kumar, Keshav, Ramkumar, K.R., Kaur, Amanpreet.  2020.  A Design Implementation and Comparative Analysis of Advanced Encryption Standard (AES) Algorithm on FPGA. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :182—185.
As the technology is getting advanced continuously the problem for the security of data is also increasing. The hackers are equipped with new advanced tools and techniques to break any security system. Therefore people are getting more concern about data security. The data security is achieved by either software or hardware implementations. In this work Field Programmable Gate Arrays (FPGA) device is used for hardware implementation since these devices are less complex, more flexible and provide more efficiency. This work focuses on the hardware execution of one of the security algorithms that is the Advanced Encryption Standard (AES) algorithm. The AES algorithm is executed on Vivado 2014.2 ISE Design Suite and the results are observed on 28 nanometers (nm) Artix-7 FPGA. This work discusses the design implementation of the AES algorithm and the resources consumed in implementing the AES design on Artix-7 FPGA. The resources which are consumed are as follows-Slice Register (SR), Look-Up Tables (LUTs), Input/Output (I/O) and Global Buffer (BUFG).
2017-02-13
S. V. Trivedi, M. A. Hasamnis.  2015.  "Development of platform using NIOS II soft core processor for image encryption and decryption using AES algorithm". 2015 International Conference on Communications and Signal Processing (ICCSP). :1147-1151.

In our digital world internet is a widespread channel for transmission of information. Information that is transmitted can be in form of messages, images, audios and videos. Due to this escalating use of digital data exchange cryptography and network security has now become very important in modern digital communication network. Cryptography is a method of storing and transmitting data in a particular form so that only those for whom it is intended can read and process it. The term cryptography is most often associated with scrambling plaintext into ciphertext. This process is called as encryption. Today in industrial processes images are very frequently used, so it has become essential for us to protect the confidential image data from unauthorized access. In this paper Advanced Encryption Standard (AES) which is a symmetric algorithm is used for encryption and decryption of image. Performance of Advanced Encryption Standard algorithm is further enhanced by adding a key stream generator W7. NIOS II soft core processor is used for implementation of encryption and decryption algorithm. A system is designed with the help of SOPC (System on programmable chip) builder tool which is available in QUARTUS II (Version 10.1) environment using NIOS II soft core processor. Developed single core system is implemented using Altera DE2 FPGA board (Cyclone II EP2C35F672). Using MATLAB the image is read and then by using DWT (Discrete Wavelet Transform) the image is compressed. The image obtained after compression is now given as input to proposed AES encryption algorithm. The output of encryption algorithm is given as input to decryption algorithm in order to get back the original image. The implementation of which is done on the developed single core platform using NIOS II processor. Finally the output is analyzed in MATLAB by plotting histogram of original and encrypted image.