Biblio
Steganography is a data hiding technique, which is generally used to hide the data within a file to avoid detection. It is used in the police department, detective investigation, and medical fields as well as in many more fields. Various techniques have been proposed over the years for Image Steganography and also attackers or hackers have developed many decoding tools to break these techniques to retrieve data. In this paper, CAPTCHA codes are used to ensure that the receiver is the intended receiver and not any machine. Here a randomized CAPTCHA code is created to provide additional security to communicate with the authenticated user and used Image Steganography to achieve confidentiality. For achieving secret and reliable communication, encryption and decryption mechanism is performed; hence a machine cannot decode it using any predefined algorithm. Once a secure connection has been established with the intended receiver, the original message is transmitted using the LSB algorithm, which uses the RGB color spectrum to hide the image data ensuring additional encryption.
In order to study the application of improved image hashing algorithm in image tampering detection, based on compressed sensing and ring segmentation, a new image hashing technique is studied. The image hash algorithm based on compressed sensing and ring segmentation is proposed. First, the algorithm preprocesses the input image. Then, the ring segment is used to extract the set of pixels in each ring region. These aggregate data are separately performed compressed sensing measurements. Finally, the hash value is constructed by calculating the inner product of the measurement vector and the random vector. The results show that the algorithm has good perceived robustness, uniqueness and security. Finally, the ROC curve is used to analyze the classification performance. The comparison of ROC curves shows that the performance of the proposed algorithm is better than FM-CS, GF-LVQ and RT-DCT.
The world is continuously developing, and people's needs are increasing as well; so too are the number of thieves increasing, especially electronic thieves. For that reason, companies and individuals are always searching for experts who will protect them from thieves, and these experts are called digital investigators. Digital forensics has a number of branches and different parts, and image forensics is one of them. The budget for the images branch goes up every day in response to the need. In this paper we offer some information about images and image forensics, image components and how they are stored in digital devices and how they can be deleted and recovered. We offer general information about digital forensics, focusing on image forensics.
This paper proposes a new hybrid technique for combined encryption text and image based on hyperchaos system. Since antiquity, man has continued looking for ways to send messages to his correspondents in order to communicate with them safely. It needed, through successive epochs, both physical and intellectual efforts in order to find an effective and appropriate communication technique. On another note, there is a behavior between the rigid regularity and randomness. This behavior is called chaos. In fact, it is a new field of investigation that is opened along with a new understanding of the frequently misunderstood long effects. The chaotic cryptography is thus born by inclusion of chaos in encryption algorithms. This article is in this particular context. Its objective is to create and implement an encryption algorithm based on a hyperchaotic system. This algorithm is composed of four methods: two for encrypting images and two for encrypting texts. The user chose the type of the input of the encryption (image or text) and as well as of the output. This new algorithm is considered a renovation in the science of cryptology, with the hybrid methods. This research opened a new features.
Captchas are designed to be easy for humans but hard for machines. However, most recent research has focused only on making them hard for machines. In this paper, we present what is to the best of our knowledge the first large scale evaluation of captchas from the human perspective, with the goal of assessing how much friction captchas present to the average user. For the purpose of this study we have asked workers from Amazon’s Mechanical Turk and an underground captchabreaking service to solve more than 318 000 captchas issued from the 21 most popular captcha schemes (13 images schemes and 8 audio scheme). Analysis of the resulting data reveals that captchas are often difficult for humans, with audio captchas being particularly problematic. We also find some demographic trends indicating, for example, that non-native speakers of English are slower in general and less accurate on English-centric captcha schemes. Evidence from a week’s worth of eBay captchas (14,000,000 samples) suggests that the solving accuracies found in our study are close to real-world values, and that improving audio captchas should become a priority, as nearly 1% of all captchas are delivered as audio rather than images. Finally our study also reveals that it is more effective for an attacker to use Mechanical Turk to solve captchas than an underground service.