Biblio
WSN can be termed as a collection of dimensionally diffused nodes which are capable of surveilling and analyzing their surroundings. The sensors are delicate, transportable and small in size while being economical at the same time. However, the diffused nature of these networks also exposes them to a variety of security hazards. Hence, ensuring a reliable file exchange in these networks is not an easy job due to various security requirements that must be fulfilled. In this paper we concentrate mainly on network layer threats and their security countermeasures to overcome the scope of intruders to access the information without having any authentication on the network layer. Various network layer intrusions that are discussed here include Sinkhole Attack, Sybil Attack, Wormhole Attack, Selective Forwarding Attack, Blackhole Attack And Hello Flood Attack.
The pace of technological development in automotive and transportation has been accelerating rapidly in recent years. Automation of driver assistance systems, autonomous driving, increasing vehicle connectivity and emerging inter-vehicular communication (V2V) are among the most disruptive innovations, the latter of which also raises numerous unprecedented security concerns. This paper is focused on the security of V2V communication in vehicle ad-hoc networks (VANET) with the main goal of identifying realistic attack scenarios and evaluating their impact, as well as possible security countermeasures to thwart the attacks. The evaluation has been done in OMNeT++ simulation environment and the results indicate that common attacks, such as replay attack or message falsification, can be eliminated by utilizing digital signatures and message validation. However, detection and mitigation of advanced attacks such as Sybil attack requires more complex approach. The paper also presents a simple detection method of Sybil nodes based on measuring the signal strength of received messages and maintaining reputation of sending nodes. The evaluation results suggest that the presented method is able to detect Sybil nodes in VANET and contributes to the improvement of traffic flow.
Network attacks continue to pose threats to missions in cyber space. To prevent critical missions from getting impacted or minimize the possibility of mission impact, active cyber defense is very important. Mission impact graph is a graphical model that enables mission impact assessment and shows how missions can be possibly impacted by cyber attacks. Although the mission impact graph provides valuable information, it is still very difficult for human analysts to comprehend due to its size and complexity. Especially when given limited resources, human analysts cannot easily decide which security measures to take first with respect to mission assurance. Therefore, this paper proposes to apply a ranking algorithm towards the mission impact graph so that the huge amount of information can be prioritized. The actionable conditions that can be managed by security admins are ranked with numeric values. The rank enables efficient utilization of limited resources and provides guidance for taking security countermeasures.
Artificial intelligence technology such as neural network (NN) is widely used in intelligence module for Internet of Things (IoT). On the other hand, the risk of illegal attacks for IoT devices is pointed out; therefore, security countermeasures such as an authentication are very important. In the field of hardware security, the physical unclonable functions (PUFs) have been attracted attention as authentication techniques to prevent the semiconductor counterfeits. However, implementation of the dedicated hardware for both of NN and PUF increases circuit area. Therefore, this study proposes a new area constraint aware PUF for intelligence module. The proposed PUF utilizes the propagation delay time from input layer to output layer of NN. To share component for operation, the proposed PUF reduces the circuit area. Experiments using a field programmable gate array evaluate circuit area and PUF performance. In the result of circuit area, the proposed PUF was smaller than the conventional PUFs was showed. Then, in the PUF performance evaluation, for steadiness, diffuseness, and uniqueness, favorable results were obtained.
The discussion of threats and vulnerabilities in Industrial Control Systems has gained popularity during the last decade due to the increase in interest and growing concern to secure these systems. In order to provide an overview of the complete landscape of these threats and vulnerabilities this contribution provides a tiered security analysis of the assets that constitute Industrial Control Systems. The identification of assets is obtained from a generalization of the system's architecture. Additionally, the security analysis is complemented by discussing security countermeasures and solutions that can be used to counteract the vulnerabilities and increase the security of control systems.
This paper presents a model to evaluate and select security countermeasures from a pool of candidates. The model performs industrial evaluation and simulations of the financial and technical impact associated to security countermeasures. The financial impact approach uses the Return On Response Investment (RORI) index to compare the expected impact of the attack when no response is enacted against the impact after applying security countermeasures. The technical impact approach evaluates the protection level against a threat, in terms of confidentiality, integrity, and availability. We provide a use case on malware attacks that shows the applicability of our model in selecting the best countermeasure against an Advanced Persistent Threat.