Visible to the public Biblio

Filters: Keyword is dynamic defense strategy  [Clear All Filters]
2020-01-20
Xiao, Kaiming, Zhu, Cheng, Xie, Junjie, Zhou, Yun, Zhu, Xianqiang, Zhang, Weiming.  2018.  Dynamic Defense Strategy against Stealth Malware Propagation in Cyber-Physical Systems. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1790–1798.
Stealth malware, a representative tool of advanced persistent threat (APT) attacks, in particular poses an increased threat to cyber-physical systems (CPS). Due to the use of stealthy and evasive techniques (e.g., zero-day exploits, obfuscation techniques), stealth malwares usually render conventional heavyweight countermeasures (e.g., exploits patching, specialized ant-malware program) inapplicable. Light-weight countermeasures (e.g., containment techniques), on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game, and safety requirements of CPS are introduced as constraints in the defender's decision model. Specifically, we first propose a static game (SSPTI), and then extend it to a multi-stage dynamic game (DSPTI) to meet the need of real-time decision making. Both games are modelled as bi-level integer programs, and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg Equilibrium of SSPTI. Finally, we design a model predictive control strategy to solve DSPTI approximately by sequentially solving an approximation of SSPTI. The extensive simulation results demonstrate that the proposed dynamic defense strategy can achieve a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.
2017-02-14
P. Hu, H. Li, H. Fu, D. Cansever, P. Mohapatra.  2015.  "Dynamic defense strategy against advanced persistent threat with insiders". 2015 IEEE Conference on Computer Communications (INFOCOM). :747-755.

The landscape of cyber security has been reformed dramatically by the recently emerging Advanced Persistent Threat (APT). It is uniquely featured by the stealthy, continuous, sophisticated and well-funded attack process for long-term malicious gain, which render the current defense mechanisms inapplicable. A novel design of defense strategy, continuously combating APT in a long time-span with imperfect/incomplete information on attacker's actions, is urgently needed. The challenge is even more escalated when APT is coupled with the insider threat (a major threat in cyber-security), where insiders could trade valuable information to APT attacker for monetary gains. The interplay among the defender, APT attacker and insiders should be judiciously studied to shed insights on a more secure defense system. In this paper, we consider the joint threats from APT attacker and the insiders, and characterize the fore-mentioned interplay as a two-layer game model, i.e., a defense/attack game between defender and APT attacker and an information-trading game among insiders. Through rigorous analysis, we identify the best response strategies for each player and prove the existence of Nash Equilibrium for both games. Extensive numerical study further verifies our analytic results and examines the impact of different system configurations on the achievable security level.