Visible to the public Biblio

Filters: Keyword is Cellular phones  [Clear All Filters]
2023-03-17
Liu, Qingyan, Albina, Erlito M..  2022.  Application of Face Recognition Technology in Mobile Payment. 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). :217–219.
The current face recognition technology has rapidly come into the public life, from unlocking cell phone face to mobile payment, which has brought a lot of convenience to life. However, it is undeniable that it also brings security challenges. Based on this paper, we will discuss the risks of face recognition in the mobile payment and put forward relevant suggestions.
2022-10-06
Zhu, Xiaoyan, Zhang, Yu, Zhu, Lei, Hei, Xinhong, Wang, Yichuan, Hu, Feixiong, Yao, Yanni.  2021.  Chinese named entity recognition method for the field of network security based on RoBERTa. 2021 International Conference on Networking and Network Applications (NaNA). :420–425.
As the mobile Internet is developing rapidly, people who use cell phones to access the Internet dominate, and the mobile Internet has changed the development environment of online public opinion and made online public opinion events spread more widely. In the online environment, any kind of public issues may become a trigger for the generation of public opinion and thus need to be controlled for network supervision. The method in this paper can identify entities from the event texts obtained from mobile Today's Headlines, People's Daily, etc., and informatize security of public opinion in event instances, thus strengthening network supervision and control in mobile, and providing sufficient support for national security event management. In this paper, we present a SW-BiLSTM-CRF model, as well as a model combining the RoBERTa pre-trained model with the classical neural network BiLSTM model. Our experiments show that this approach provided achieves quite good results on Chinese emergency corpus, with accuracy and F1 values of 87.21% and 78.78%, respectively.
2021-03-22
Sai, C. C., Prakash, C. S., Jose, J., Mana, S. C., Samhitha, B. K..  2020.  Analysing Android App Privacy Using Classification Algorithm. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :551–555.
The interface permits the client to scan for a subjective utility on the Play Store; the authorizations posting and the protection arrangement are then routinely recovered, on all events imaginable. The client has then the capability of choosing an interesting authorization, and a posting of pertinent sentences are separated with the guide of the privateer's inclusion and introduced to them, alongside a right depiction of the consent itself. Such an interface allows the client to rapidly assess the security-related dangers of an Android application, by utilizing featuring the pertinent segments of the privateer's inclusion and by introducing helpful data about shrewd authorizations. A novel procedure is proposed for the assessment of privateer's protection approaches with regards to Android applications. The gadget actualized widely facilitates the way toward understanding the security ramifications of placing in 1/3 birthday celebration applications and it has just been checked in a situation to feature troubling examples of uses. The gadget is created in light of expandability, and correspondingly inclines in the strategy can without trouble be worked in to broaden the unwavering quality and adequacy. Likewise, if your application handles non-open or delicate individual information, it would be ideal if you also allude to the extra necessities in the “Individual and Sensitive Information” territory underneath. These Google Play necessities are notwithstanding any prerequisites endorsed by method for material security or data assurance laws. It has been proposed that, an individual who needs to perform the establishment and utilize any 1/3 festival application doesn't perceive the significance and which methods for the consents mentioned by method for an application, and along these lines sincerely gives all the authorizations as a final product of which unsafe applications furthermore get set up and work their malevolent leisure activity in the rear of the scene.
2020-06-26
Karthika, P., Babu, R. Ganesh, Nedumaran, A..  2019.  Machine Learning Security Allocation in IoT. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :474—478.

The progressed computational abilities of numerous asset compelled gadgets mobile phones have empowered different research zones including picture recovery from enormous information stores for various IoT applications. The real difficulties for picture recovery utilizing cell phones in an IoT situation are the computational intricacy and capacity. To manage enormous information in IoT condition for picture recovery a light-weighted profound learning base framework for vitality obliged gadgets. The framework initially recognizes and crop face areas from a picture utilizing Viola-Jones calculation with extra face classifier to take out the identification issue. Besides, the utilizes convolutional framework layers of a financially savvy pre-prepared CNN demonstrate with characterized highlights to speak to faces. Next, highlights of the huge information vault are listed to accomplish a quicker coordinating procedure for constant recovery. At long last, Euclidean separation is utilized to discover comparability among question and archive pictures. For exploratory assessment, we made a nearby facial pictures dataset it including equally single and gathering face pictures. In the dataset can be utilized by different specialists as a scale for examination with other ongoing facial picture recovery frameworks. The trial results demonstrate that our planned framework beats other cutting edge highlight extraction strategies as far as proficiency and recovery for IoT-helped vitality obliged stages.

2014-09-26
Parno, B., McCune, J.M., Perrig, A.  2010.  Bootstrapping Trust in Commodity Computers. Security and Privacy (SP), 2010 IEEE Symposium on. :414-429.

Trusting a computer for a security-sensitive task (such as checking email or banking online) requires the user to know something about the computer's state. We examine research on securely capturing a computer's state, and consider the utility of this information both for improving security on the local computer (e.g., to convince the user that her computer is not infected with malware) and for communicating a remote computer's state (e.g., to enable the user to check that a web server will adequately protect her data). Although the recent "Trusted Computing" initiative has drawn both positive and negative attention to this area, we consider the older and broader topic of bootstrapping trust in a computer. We cover issues ranging from the wide collection of secure hardware that can serve as a foundation for trust, to the usability issues that arise when trying to convey computer state information to humans. This approach unifies disparate research efforts and highlights opportunities for additional work that can guide real-world improvements in computer security.