Biblio
In a number of information security scenarios, human beings can be better than technical security measures at detecting threats. This is particularly the case when a threat is based on deception of the user rather than exploitation of a specific technical flaw, as is the case of spear-phishing, application spoofing, multimedia masquerading and other semantic social engineering attacks. Here, we put the concept of the human-as-a-security-sensor to the test with a first case study on a small number of participants subjected to different attacks in a controlled laboratory environment and provided with a mechanism to report these attacks if they spot them. A key challenge is to estimate the reliability of each report, which we address with a machine learning approach. For comparison, we evaluate the ability of known technical security countermeasures in detecting the same threats. This initial proof of concept study shows that the concept is viable.
Social Engineering is a kind of advance persistent threat (APT) that gains private and sensitive information through social networks or other types of communication. The attackers can use social engineering to obtain access into social network accounts and stays there undetected for a long period of time. The purpose of the attack is to steal sensitive data and spread false information rather than to cause direct damage. Such targets can include Facebook accounts of government agencies, corporations, schools or high-profile users. We propose to use IDS, Intrusion Detection System, to battle such attacks. What the social engineering does is try to gain easy access, so that the attacks can be repeated and ongoing. The focus of this study is to find out how this type of attacks are carried out so that they can properly detected by IDS in future research.
In recent years, cyber security threats have become increasingly dangerous. Hackers have fabricated fake emails to spoof specific users into clicking on malicious attachments or URL links in them. This kind of threat is called a spear-phishing attack. Because spear-phishing attacks use unknown exploits to trigger malicious activities, it is difficult to effectively defend against them. Thus, this study focuses on the challenges faced, and we develop a Cloud-threat Inspection Appliance (CIA) system to defend against spear-phishing threats. With the advantages of hardware-assisted virtualization technology, we use the CIA to develop a transparent hypervisor monitor that conceals the presence of the detection engine in the hypervisor kernel. In addition, the CIA also designs a document pre-filtering algorithm to enhance system performance. By inspecting PDF format structures, the proposed CIA was able to filter 77% of PDF attachments and prevent them from all being sent into the hypervisor monitor for deeper analysis. Finally, we tested CIA in real-world scenarios. The hypervisor monitor was shown to be a better anti-evasion sandbox than commercial ones. During 2014, CIA inspected 780,000 mails in a company with 200 user accounts, and found 65 unknown samples that were not detected by commercial anti-virus software.
The modern malware poses serious security threats because of its evolved capability of using staged and persistent attack while remaining undetected over a long period of time to perform a number of malicious activities. The challenge for malicious actors is to gain initial control of the victim's machine by bypassing all the security controls. The most favored bait often used by attackers is to deceive users through a trusting or interesting email containing a malicious attachment or a malicious link. To make the email credible and interesting the cybercriminals often perform reconnaissance activities to find background information on the potential target. To this end, the value of information found on the discarded or stolen storage devices is often underestimated or ignored. In this paper, we present the partial results of analysis of one such hard disk that was purchased from the open market. The data found on the disk contained highly sensitive personal and organizational data. The results from the case study will be useful in not only understanding the involved risk but also creating awareness of related threats.