Visible to the public Biblio

Filters: Keyword is coding  [Clear All Filters]
2023-02-17
Luo, Zhiyong, Wang, Bo.  2022.  A Secure and Efficient Analytical Encryption Method for Industrial Internet Identification based on SHA-256 and RSA. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1874–1878.
With the development of Industrial Internet identification analysis, various encryption methods have been widely used in identification analysis to ensure the security of identification encoding and data. However, the past encryption methods failed to consider the problem of encryption efficiency in the case of high concurrency, so it will reduce the identification resolution efficiency and increase the computational pressure of secondary nodes when applying these methods to the identification analysis. In this paper, in order to improve the efficiency of identification analysis under the premise of ensuring information security, a safe and efficient analytical encryption method for industrial Internet identification based on Secure Hash Algorithm 256 (SHA-256), and Rivest-Shamir-Adleman (RSA) is presented. Firstly, by replacing the secret key in the identification encoding encryption with the SHA-256 function, the number of secret keys is reduced, which is beneficial to improve the efficiency of identification analysis. Secondly, by replacing the large prime number of the RSA encryption algorithm with multiple small prime numbers, the generation speed of RSA key pair is improved, which is conducive to reduce the computation of secondary nodes. Finally, by assigning a unique RSA private key to the identification code during the identification registration phase, SHA-256 and RSA are associated, the number of key exchanges is reduced during the encryption process, which is conducive to improve the security of encryption. The experiment verifies that the proposed method can improve security of encryption and efficiency of identification analysis, by comparing the complexity of ciphertext cracking and the identification security analysis time between the traditional encryption method and this method.
2022-07-01
Yudin, Oleksandr, Artemov, Volodymyr, Krasnorutsky, Andrii, Barannik, Vladimir, Tupitsya, Ivan, Pris, Gennady.  2021.  Creating a Mathematical Model for Estimating the Impact of Errors in the Process of Reconstruction of Non-Uniform Code Structures on the Quality of Recoverable Video Images. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :40—45.
Existing compression coding technologies are investigated using a statistical approach. The fundamental strategies used in the process of statistical coding of video information data are analyzed. Factors that have a significant impact on the reliability and efficiency of video delivery in the process of statistical coding are analyzed. A model for estimating the impact of errors in the process of reconstruction of uneven code structures on the quality of recoverable video images is being developed.The influence of errors that occur in data transmission channels on the reliability of the reconstructed video image is investigated.
Yudin, Oleksandr, Cherniak, Andrii, Havrylov, Dmytro, Hurzhii, Pavlo, Korolyova, Natalia, Sidchenko, Yevhenii.  2021.  Video Coding Method in a Condition of Providing Security and Promptness of Delivery. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :26—30.
In the course of the research, the research of discriminatory methods of handling video information resource based on the JPEG platform was carried out. This research showed a high interest of the scientific world in identifying important data at different phases of handling. However, the discriminatory handling of the video information resource after the quantization phase is not well understood. Based on the research data, the goal is to find possible ways to operation a video information resource based on a JPEG platform in order to identify important data in a telecommunications system. At the same time, the proposed strategies must provide the required pace of dynamic picture grade and hiding in the context of limited bandwidth. The fulfillment of the condition with limited bandwidth is achieved through the use of a lossless compression algorism based on arithmetic coding. The purpose of the study is considered to be achieved if the following requirements are met:1.Reduction of the volume of dynamic pictures by 30% compared to the initial amount;2.The quality pace is confirmed by an estimate of the peak signal-to-noise ratio for an authorized user, which is Ψauthor ≥ 20 dB;3.The pace of hiding is confirmed by an estimate of the peak signal-to-noise ratio for unauthorized access, which is Ψunauthor ≤ 9 dBThe first strategy is to use encryption tables. The advantage of this strategy is its high hiding strength.The second strategy is the important matrix method. The advantage of this strategy is higher performance.Thus, the goal of the study on the development of possible ways of handling a video information resource based on a JPEG platform in order to identify important data in a telecommunication system with the given requirements is achieved.
2020-02-17
Pérez García, Julio César, Ortiz Guerra, Erik, Barriquello, Carlos Henrique, Dalla Costa, Marco Antônio, Reguera, Vitalio Alfonso.  2019.  Faster-Than-Nyquist Signaling for Physical Layer Security on Wireless Smart Grid. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–6.
Wireless networks offer great flexibility and ease of deployment for the rapid implementation of smart grids. However, these data network technologies are prone to security issues. Especially, the risk of eavesdropping attacks increases due to the inherent characteristics of the wireless medium. In this context, physical layer security can augment secrecy through appropriate coding and signal processing. In this paper we consider the use of faster-than-Nyquist signaling to introduce artificial noise in the wireless network segment of the smart grid; with the aim of reinforce the information security at the physical layer. The results show that the proposed scheme can significantly improves the secrecy rate of the channel. Guaranteeing, in coexistence with other security mechanisms and despite the presence of potential eavesdroppers, a reliable and secure flow of information for smart grids.
2018-08-23
Li, Xin.  2017.  Improved Non-malleable Extractors, Non-malleable Codes and Independent Source Extractors. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. :1144–1156.
In this paper we give improved constructions of several central objects in the literature of randomness extraction and tamper-resilient cryptography. Our main results are: (1) An explicit seeded non-malleable extractor with error � and seed length d=O(logn)+O(log(1/�)loglog(1/�)), that supports min-entropy k=Ω(d) and outputs Ω(k) bits. Combined with the protocol by Dodis and Wichs, this gives a two round privacy amplification protocol with optimal entropy loss in the presence of an active adversary, for all security parameters up to Ω(k/logk), where k is the min-entropy of the shared weak random source. Previously, the best known seeded non-malleable extractors require seed length and min-entropy O(logn)+log(1/�)2O�loglog(1/�), and only give two round privacy amplification protocols with optimal entropy loss for security parameter up to k/2O(�logk). (2) An explicit non-malleable two-source extractor for min entropy k � (1��)n, some constant �\textbackslashtextgreater0, that outputs Ω(k) bits with error 2�Ω(n/logn). We further show that we can efficiently uniformly sample from the pre-image of any output of the extractor. Combined with the connection found by Cheraghchi and Guruswami this gives a non-malleable code in the two-split-state model with relative rate Ω(1/logn). This exponentially improves previous constructions, all of which only achieve rate n�Ω(1). (3) Combined with the techniques by Ben-Aroya et. al, our non-malleable extractors give a two-source extractor for min-entropy O(logn loglogn), which also implies a K-Ramsey graph on N vertices with K=(logN)O(logloglogN). Previously the best known two-source extractor by Ben-Aroya et. al requires min-entropy logn 2O(�logn), which gives a Ramsey graph with K=(logN)2O(�logloglogN). We further show a way to reduce the problem of constructing seeded non-malleable extractors to the problem of constructing non-malleable independent source extractors. Using the non-malleable 10-source extractor with optimal error by Chattopadhyay and Zuckerman, we give a 10-source extractor for min-entropy O(logn). Previously the best known extractor for such min-entropy by Cohen and Schulman requires O(loglogn) sources. Independent of our work, Cohen obtained similar results to (1) and the two-source extractor, except the dependence on � is log(1/�)poly loglog(1/�) and the two-source extractor requires min-entropy logn poly loglogn.
2018-06-11
Ar-reyouchi, El Miloud, Hammouti, Maria, Maslouhi, Imane, Ghoumid, Kamal.  2017.  The Internet of Things: Network Delay Improvement Using Network Coding. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :8:1–8:7.
Thanks to the occurrence of the Internet of Things (IoT), the devices are able to collect and transmit data via the Internet and contributing to our big data world. It will permit devices to exchange monitoring data content in real time. Real-time communication (RTC) with these devices was analyzed in respect to the Network delay. Network coding (NC) combines data packets and the output packet which is a mixture of the input packets. This technique can provide many potential gains to the network, including reducing Round-Trip Time (RTT), decreasing latency and improving Network delay (ND). In the present paper, the authors improve network delay metrics in the context of the remote management of renewable energy using a random NC with an efficient strategy technique.
2017-09-19
Ford, Corey, Staley, Clinton.  2016.  Automated Analysis of Student Programmer Coding Behavior Patterns (Abstract Only). Proceedings of the 47th ACM Technical Symposium on Computing Science Education. :688–688.

Important information regarding the learning experience and relative preparedness of Computer Science students can be obtained by analyzing their coding activity at a fine-grained level, using an online IDE that records student code editing, compiling, and testing activities down to the individual keystroke. We report results from analyses of student coding patterns using such an online IDE. In particular, we gather data from a group of students performing an assigned programming lab, using the online IDE indicated to gather statistics. We extract high-level statistics from the student data, and apply supervised learning techniques to identify those that are the most salient prediction of student success as measured by later performance in the class. We use these results to make predictions of course performance for another student group, and report on the reliability of those predictions

2017-02-14
H. Bahrami, K. Hajsadeghi.  2015.  "Circuit design to improve security of telecommunication devices". 2015 IEEE Conference on Technologies for Sustainability (SusTech). :171-175.

Security in mobile handsets of telecommunication standards such as GSM, Project 25 and TETRA is very important, especially when governments and military forces use handsets and telecommunication devices. Although telecommunication could be quite secure by using encryption, coding, tunneling and exclusive channel, attackers create new ways to bypass them without the knowledge of the legitimate user. In this paper we introduce a new, simple and economical circuit to warn the user in cases where the message is not encrypted because of manipulation by attackers or accidental damage. This circuit not only consumes very low power but also is created to sustain telecommunication devices in aspect of security and using friendly. Warning to user causes the best practices of telecommunication devices without wasting time and energy for fault detection.