Biblio
Malicious login, especially lateral movement, has been a primary and costly threat for enterprises. However, there exist two critical challenges in the existing methods. Specifically, they heavily rely on a limited number of predefined rules and features. When the attack patterns change, security experts must manually design new ones. Besides, they cannot explore the attributes' mutual effect specific to login operations. We propose MLTracer, a graph neural network (GNN) based system for detecting such attacks. It has two core components to tackle the previous challenges. First, MLTracer adopts a novel method to differentiate crucial attributes of login operations from the rest without experts' designated features. Second, MLTracer leverages a GNN model to detect malicious logins. The model involves a convolutional neural network (CNN) to explore attributes of login operations, and a co-attention mechanism to mutually improve the representations (vectors) of login attributes through learning their login-specific relation. We implement an evaluation of such an approach. The results demonstrate that MLTracer significantly outperforms state-of-the-art methods. Moreover, MLTracer effectively detects various attack scenarios with a remarkably low false positive rate (FPR).
Abstract—Lateral movement-based attacks are increasingly leading to compromises in large private and government networks, often resulting in information exfiltration or service disruption. Such attacks are often slow and stealthy and usually evade existing security products. To enable effective detection of such attacks, we present a new approach based on graph-based modeling of the security state of the target system and correlation of diverse indicators of anomalous host behavior. We believe that irrespective of the specific attack vectors used, attackers typically establish a command and control channel to operate, and move in the target system to escalate their privileges and reach sensitive areas. Accordingly, we identify important features of command and control and lateral movement activities and extract them from internal and external communication traffic. Driven by the analysis of the features, we propose the use of multiple anomaly detection techniques to identify compromised hosts. These methods include Principal Component Analysis, k-means clustering, and Median Absolute Deviation-based utlier detection. We evaluate the accuracy of identifying compromised hosts by using injected attack traffic in a real enterprise network dataset, for various attack communication models. Our results show that the proposed approach can detect infected hosts with high accuracy and a low false positive rate.
The number of detected and analyzed Advanced Persistent Threat (APT) campaigns increased over the last years. Two of the main objectives of such campaigns are to maintain long-term access to the environment of the target and to stay undetected. To achieve these goals the attackers use sophisticated and customized techniques for the lateral movement, to ensure that these activities are not detected by existing security systems. During an investigation of an APT campaign all stages of it are relevant to clarify important details like the initial infection vector or the compromised systems and credentials. Most of the currently used approaches, which are utilized within security systems, are not able to detect the different stages of a complex attack and therefore a comprehensive security investigation is needed. In this paper we describe a concept for a Security Investigation Framework (SIF) that supports the analysis and the tracing of multi-stage APTs. The concept includes different automatic and semi-automatic approaches that support the investigation of such attacks. Furthermore, the framework leverages different information sources, like log files and details from forensic investigations and malware analyses, to give a comprehensive overview of the different stages of an attack. The overall objective of the SIF is to improve the efficiency of investigations and reveal undetected details of an attack.