Visible to the public Biblio

Filters: Keyword is Media Data  [Clear All Filters]
2021-01-11
Zhang, X., Chandramouli, K., Gabrijelcic, D., Zahariadis, T., Giunta, G..  2020.  Physical Security Detectors for Critical Infrastructures Against New-Age Threat of Drones and Human Intrusion. 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW). :1—4.

Modern critical infrastructures are increasingly turning into distributed, complex Cyber-Physical systems that need proactive protection and fast restoration to mitigate physical or cyber incidents or attacks. Addressing the need for early stage threat detection against physical intrusion, the paper presents two physical security sensors developed within the DEFENDER project for detecting the intrusion of drones and humans using video analytics. The continuous stream of media data obtained from the region of vulnerability and proximity is processed using Region based Fully Connected Neural Network deep-learning model. The novelty of the pro-posed system relies in the processing of multi-threaded media input streams for achieving real-time threat identification. The video analytics solution has been validated using NVIDIA GeForce GTX 1080 for drone detection and NVIDIA GeForce RTX 2070 Max-Q Design for detecting human intruders. The experimental test bed for the validation of the proposed system has been constructed to include environments and situations that are commonly faced by critical infrastructure operators such as the area of protection, tradeoff between angle of coverage against distance of coverage.

2017-02-14
K. Liu, M. Li, X. Li.  2015.  "Hiding Media Data via Shaders: Enabling Private Sharing in the Clouds". 2015 IEEE 8th International Conference on Cloud Computing. :122-129.

In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.