Visible to the public Biblio

Filters: Keyword is Microorganisms  [Clear All Filters]
2020-12-14
Gu, Y., Liu, N..  2020.  An Adaptive Grey Wolf Algorithm Based on Population System and Bacterial Foraging Algorithm. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :744–748.
In this thesis, an modified algorithm for grey wolf optimization in swarm intelligence optimization algorithm is proposed, which is called an adaptive grey wolf algorithm (AdGWO) based on population system and bacterial foraging optimization algorithm (BFO). In view of the disadvantages of premature convergence and local optimization in solving complex optimization problems, the AdGWO algorithm uses a three-stage nonlinear change function to simulate the decreasing change of the convergence factor, and at the same time integrates the half elimination mechanism of the BFO. These improvements are more in line with the actual situation of natural wolves. The algorithm is based on 23 famous test functions and compared with GWO. Experimental results demonstrate that this algorithm is able to avoid sinking into the local optimum, has good accuracy and stability, is a more competitive algorithm.
2020-04-24
Yu, Jiangfan, Zhang, Li.  2019.  Reconfigurable Colloidal Microrobotic Swarm for Targeted Delivery. 2019 16th International Conference on Ubiquitous Robots (UR). :615—616.

Untethered microrobots actuated by external magnetic fields have drawn extensive attention recently, due to their potential advantages in real-time tracking and targeted delivery in vivo. To control a swarm of microrobots with external fields, however, is still one of the major challenges in this field. In this work, we present new methods to generate ribbon-like and vortex-like microrobotic swarms using oscillating and rotating magnetic fields, respectively. Paramagnetic nanoparticles with a diameter of 400 nm serve as the agents. These two types of swarms exhibits out-of-equilibrium structure, in which the nanoparticles perform synchronised motions. By tuning the magnetic fields, the swarming patterns can be reversibly transformed. Moreover, by increasing the pitch angle of the applied fields, the swarms are capable of performing navigated locomotion with a controlled velocity. This work sheds light on a better understanding for microrobotic swarm behaviours and paves the way for potential biomedical applications.

2020-03-23
Rathore, Heena, Samant, Abhay, Guizani, Mohsen.  2019.  A Bio-Inspired Framework to Mitigate DoS Attacks in Software Defined Networking. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Software Defined Networking (SDN) is an emerging architecture providing services on a priority basis for real-time communication, by pulling out the intelligence from the hardware and developing a better management system for effective networking. Denial of service (DoS) attacks pose a significant threat to SDN, as it can disable the genuine hosts and routers by exhausting their resources. It is thus vital to provide efficient traffic management, both at the data layer and the control layer, thereby becoming more responsive to dynamic network threats such as DoS. Existing DoS prevention and mitigation models for SDN are computationally expensive and are slow to react. This paper introduces a novel biologically inspired architecture for SDN to detect DoS flooding attacks. The proposed biologically inspired architecture utilizes the concepts of the human immune system to provide a robust solution against DoS attacks in SDNs. The two layer immune inspired framework, viz innate layer and adaptive layer, is initiated at the data layer and the control layer of SDN, respectively. The proposed model is reactive and lightweight for DoS mitigation in SDNs.
2017-02-21
K. Cavalleri, B. Brinkman.  2015.  "Water treatment in context: resources and African religion". 2015 Systems and Information Engineering Design Symposium. :19-23.

Drinking water availability is a crucial problem that must be addressed in order to improve the quality of life of individuals living developing nations. Improving water supply availability is important for public health, as it is the third highest risk factor for poor health in developing nations with high mortality rates. This project researched drinking water filtration for areas of Sub-Saharan Africa near existing bodies of water, where the populations are completely reliant on collecting from surface water sources: the most contaminated water source type. Water filtration methods that can be completely created by the consumer would alleviate aid organization dependence in developing nations, put the consumers in control, and improve public health. Filtration processes pass water through a medium that will catch contaminants through physical entrapment or absorption and thus yield a cleaner effluent. When exploring different materials for filtration, removal of contaminants and hydraulic conductivity are the two most important components. Not only does the method have to treat the water, but also it has to do so in a timeframe that is quick enough to produce potable water at a rate that keeps up with everyday needs. Cement is easily accessible in Sub- Saharan regions. Most concrete mixtures are not meant to be pervious, as it is a construction material used for its compressive strength, however, reduced water content in a cement mixture gives it higher permeability. Several different concrete samples of varying thicknesses and water concentrations were created. Bacterial count tests were performed on both pre-filtered and filtered water samples. Concrete filtration does remove bacteria from drinking water, however, the method can still be improved upon.

2017-02-14
M. Bere, H. Muyingi.  2015.  "Initial investigation of Industrial Control System (ICS) security using Artificial Immune System (AIS)". 2015 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC). :79-84.

Industrial Control Systems (ICS) which among others are comprised of Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) are used to control industrial processes. ICS have now been connected to other Information Technology (IT) systems and have as a result become vulnerable to Advanced Persistent Threats (APT). APTs are targeted attacks that use zero-day attacks to attack systems. Current ICS security mechanisms fail to deter APTs from infiltrating ICS. An analysis of possible solutions to deter APTs was done. This paper proposes the use of Artificial Immune Systems to secure ICS from APTs.