Biblio
In this paper, we introduce a fast, secure and robust scheme for digital image encryption using chaotic system of Lorenz, 4D hyper-chaotic system and the Secure Hash Algorithm SHA-1. The encryption process consists of three layers: sub-vectors confusion and two-diffusion process. In the first layer we divide the plainimage into sub-vectors then, the position of each one is changed using the chaotic index sequence generated with chaotic attractor of Lorenz, while the diffusion layers use hyper-chaotic system to modify the values of pixels using an XOR operation. The results of security analysis such as statistical tests, differential attacks, key space, key sensitivity, entropy information and the running time are illustrated and compared to recent encryption schemes where the highest security level and speed are improved.
In this paper, a novel quantum encryption algorithm for color image is proposed based on multiple discrete chaotic systems. The proposed quantum image encryption algorithm utilize the quantum controlled-NOT image generated by chaotic logistic map, asymmetric tent map and logistic Chebyshev map to control the XOR operation in the encryption process. Experiment results and analysis show that the proposed algorithm has high efficiency and security against differential and statistical attacks.
The enormous size of video data of natural scene and objects is a practical threat to storage, transmission. The efficient handling of video data essentially requires compression for economic utilization of storage space, access time and the available network bandwidth of the public channel. In addition, the protection of important video is of utmost importance so as to save it from malicious intervention, attack or alteration by unauthorized users. Therefore, security and privacy has become an important issue. Since from past few years, number of researchers concentrate on how to develop efficient video encryption for secure video transmission, a large number of multimedia encryption schemes have been proposed in the literature like selective encryption, complete encryption and entropy coding based encryption. Among above three kinds of algorithms, they all remain some kind of shortcomings. In this paper, we have proposed a lightweight selective encryption algorithm for video conference which is based on efficient XOR operation and symmetric hierarchical encryption, successfully overcoming the weakness of complete encryption while offering a better security. The proposed algorithm guarantees security, fastness and error tolerance without increasing the video size.