Biblio
In cyberspace, availability of the resources is the key component of cyber security along with confidentiality and integrity. Distributed Denial of Service (DDoS) attack has become one of the major threats to the availability of resources in computer networks. It is a challenging problem in the Internet. In this paper, we present a detailed study of DDoS attacks on the Internet specifically the attacks due to protocols vulnerabilities in the TCP/IP model, their countermeasures and various DDoS attack mechanisms. We thoroughly review DDoS attacks defense and analyze the strengths and weaknesses of different proposed mechanisms.
Attributing the culprit of a cyber-attack is widely considered one of the major technical and policy challenges of cyber-security. The lack of ground truth for an individual responsible for a given attack has limited previous studies. Here, we overcome this limitation by leveraging DEFCON capture-the-flag (CTF) exercise data where the actual ground-truth is known. In this work, we use various classification techniques to identify the culprit in a cyberattack and find that deceptive activities account for the majority of misclassified samples. We also explore several heuristics to alleviate some of the misclassification caused by deception.
Cloud computing is a technological breakthrough in computing. It has affected each and every part of the information technology, from infrastructure to the software deployment, from programming to the application maintenance. Cloud offers a wide array of solutions for the current day computing needs aided with benefits like elasticity, affordability and scalability. But at the same time, the incidence of malicious cyber activity is progressively increasing at an unprecedented rate posing critical threats to both government and enterprise IT infrastructure. Account or service hijacking is a kind of identity theft and has evolved to be one of the most rapidly increasing types of cyber-attack aimed at deceiving end users. This paper presents an in depth analysis of a cloud security incident that happened on The New York Times online using account hijacking. Further, we present incident prevention methods and detailed incident prevention plan to stop future occurrence of such incidents.
The energy sector has been actively looking into cyber risk assessment at a global level, as it has a ripple effect; risk taken at one step in supply chain has an impact on all the other nodes. Cyber-attacks not only hinder functional operations in an organization but also waves damaging effects to the reputation and confidence among shareholders resulting in financial losses. Organizations that are open to the idea of protecting their assets and information flow and are equipped; enough to respond quickly to any cyber incident are the ones who prevail longer in global market. As a contribution we put forward a modular plan to mitigate or reduce cyber risks in global supply chain by identifying potential cyber threats at each step and identifying their immediate counterm easures.
Advanced Persistent Threat (APT) is a complex (Advanced) cyber-attack (Threat) against specific targets over long periods of time (Persistent) carried out by nation states or terrorist groups with highly sophisticated levels of expertise to establish entries into organizations, which are critical to a country's socio-economic status. The key identifier in such persistent threats is that patterns are long term, could be high priority, and occur consistently over a period of time. This paper focuses on identifying persistent threat patterns in network data, particularly data collected from Intrusion Detection Systems. We utilize Association Rule Mining (ARM) to detect persistent threat patterns on network data. We identify potential persistent threat patterns, which are frequent but at the same time unusual as compared with the other frequent patterns.
The prevalent integration of highly intermittent renewable distributed energy resources (DER) into microgrids necessitates the deployment of a microgrid controller. In the absence of the main electric grid setting the network voltage and frequency, the microgrid power and energy management becomes more challenging, accentuating the need for a centralized microgrid controller that, through communication links, ensures smooth operation of the autonomous system. This extensive reliance on information and communication technologies (ICT) creates potential access points and vulnerabilities that may be exploited by cyber-attackers. This paper first presents a typical microgrid configuration operating in islanded mode; the microgrid elements, primary and secondary control functions for power, energy and load management are defined. The information transferred from the central controller to coordinate and dispatch the DERs is provided along with the deployable communication technologies and protocols. The vulnerabilities arising in such microgrids along with the cyber-attacks exploiting them are described. The impact of these attacks on the microgrid controller functions was shown to be dependent on the characteristics, location and target of the cyber-attack, as well as the microgrid configuration and control. A real-time hardware-in-the loop (HIL) testing platform, which emulates a microgrid featuring renewable DERs, an energy storage system (ESS), a diesel generator and controllable loads was used as the case study in order to demonstrate the impact of various cyber-attacks.
Smart grid is an evolving new power system framework with ICT driven power equipment massively layered structure. The new generation sensors, smart meters and electronic devices are integral components of smart grid. However, the upcoming deployment of smart devices at different layers followed by their integration with communication networks may introduce cyber threats. The interdependencies of various subsystems functioning in the smart grid, if affected by cyber-attack, may be vulnerable and greatly reduce efficiency and reliability due to any one of the device not responding in real time frame. The cyber security vulnerabilities become even more evident due to the existing superannuated cyber infrastructure. This paper presents a critical review on expected cyber security threats in complex environment and addresses the grave concern of a secure cyber infrastructure and related developments. An extensive review on the cyber security objectives and requirements along with the risk evaluation process has been undertaken. The paper analyses confidentiality and privacy issues of entire components of smart power system. A critical evaluation on upcoming challenges with innovative research concerns is highlighted to achieve a roadmap of an immune smart grid infrastructure. This will further facilitate R&d; associated developments.
Growth of internet era and corporate sector dealings communication online has introduced crucial security challenges in cyber space. Statistics of recent large scale attacks defined new class of threat to online world, advanced persistent threat (APT) able to impact national security and economic stability of any country. From all APTs, botnet is one of the well-articulated and stealthy attacks to perform cybercrime. Botnet owners and their criminal organizations are continuously developing innovative ways to infect new targets into their networks and exploit them. The concept of botnet refers collection of compromised computers (bots) infected by automated software robots, that interact to accomplish some distributed task which run without human intervention for illegal purposes. They are mostly malicious in nature and allow cyber criminals to control the infected machines remotely without the victim's knowledge. They use various techniques, communication protocols and topologies in different stages of their lifecycle; also specifically they can upgrade their methods at any time. Botnet is global in nature and their target is to steal or destroy valuable information from organizations as well as individuals. In this paper we present real world botnet (APTs) survey.
Distributed Denial of Service (DDoS) is a sophisticated cyber-attack due to its variety of types and techniques. The traditional mitigation method of this attack is to deploy dedicated security appliances such as firewall, load balancer, etc. However, due to the limited capacity of the hardware and the potential high volume of DDoS traffic, it may not be able to defend all the attacks. Therefore, cloud-based DDoS protection services were introduced to allow the organizations to redirect their traffic to the scrubbing centers in the cloud for filtering. This solution has some drawbacks such as privacy violation and latency. More recently, Network Functions Virtualization (NFV) and edge computing have been proposed as new networking service models. In this paper, we design a framework that leverages NFV and edge computing for DDoS mitigation through two-stage processes.
The extensive use of information and communication technologies in power grid systems make them vulnerable to cyber-attacks. One class of cyber-attack is advanced persistent threats where highly skilled attackers can steal user authentication information's and then move laterally in the network, from host to host in a hidden manner, until they reach an attractive target. Once the presence of the attacker has been detected in the network, appropriate actions should be taken quickly to prevent the attacker going deeper. This paper presents a game theoretic approach to optimize the defense against an invader attempting to use a set of known vulnerabilities to reach critical nodes in the network. First, the network is modeled as a vulnerability multi-graph where the nodes represent physical hosts and edges the vulnerabilities that the attacker can exploit to move laterally from one host to another. Secondly, a two-player zero-sum Markov game is built where the states of the game represent the nodes of the vulnerability multi-graph graph and transitions correspond to the edge vulnerabilities that the attacker can exploit. The solution of the game gives the optimal strategy to disconnect vulnerable services and thus slow down the attack.
End-hopping is an effective component of Moving Target Defense (MTD) by randomly hopping network configuration of host, which is a game changing technique against cyber-attack and can interrupt cyber kill chain in the early stage. In this paper, a novel end-hopping model, Multi End-hopping (MEH), is proposed to exploit the full potentials of MTD techniques by hosts cooperating with others to share possible configurable space (PCS). And an optimization method based on cooperative game is presented to make hosts form optimal alliances against reconnaissance, scanning and blind probing DoS attack. Those model and method confuse adversaries by establishing alliances of hosts to enlarge their PCS, which thwarts various malicious scanning and mitigates probing DoS attack intensity. Through simulations, we validate the correctness of MEH model and the effectiveness of optimization method. Experiment results show that the proposed model and method increase system stable operational probability while introduces a low overhead in optimization.
Used by both information systems designers and security personnel, the Attack Tree method provides a graphical analysis of the ways in which an entity (a computer system or network, an entire organization, etc.) can be attacked and indicates the countermeasures that can be taken to prevent the attackers to reach their objective. In this paper, we built an Attack Tree focused on the goal “compromising the security of a Web platform”, considering the most common vulnerabilities of the WordPress platform identified by CVE (Common Vulnerabilities and Exposures), a global reference system for recording information regarding computer security threats. Finally, based on the likelihood of the attacks, we made a quantitative analysis of the probability that the security of the Web platform can be compromised.
Because the Internet makes human lives easier, many devices are connected to the Internet daily. The private data of individuals and large companies, including health-related data, user bank accounts, and military and manufacturing data, are increasingly accessible via the Internet. Because almost all data is now accessible through the Internet, protecting these valuable assets has become a major concern. The goal of cyber security is to protect such assets from unauthorized use. Attackers use automated tools and manual techniques to penetrate systems by exploiting existing vulnerabilities and software bugs. To provide good enough security; attack methodologies, vulnerability concepts and defence strategies should be thoroughly investigated. The main purpose of this study is to show that the patches released for existing vulnerabilities at the operating system (OS) level and in software programs does not completely prevent cyber-attack. Instead, producing specific patches for each company and fixing software bugs by being aware of the software running on each specific system can provide a better result. This study also demonstrates that firewalls, antivirus software, Windows Defender and other prevention techniques are not sufficient to prevent attacks. Instead, this study examines different aspects of penetration testing to determine vulnerable applications and hosts using the Nmap and Metasploit frameworks. For a test case, a virtualized system is used that includes different versions of Windows and Linux OS.
With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.
In this cyber era, the cyber threats have reached a new level of menace and maturity. One of the major threat in this cyber world nowadays is ransomware attack which had affected millions of computers. Ransomware locks the valuable data with often unbreakable encryption codes making it inaccessible for both organization and consumers, thus demanding heavy ransom to decrypt the data. In this paper, advanced and improved version of the Petya ransomware has been introduced which has a reduced anti-virus detection of 33% which actually was 71% with the original version. System behavior is also monitored during the attack and analysis of this behavior is performed and described. Along with the behavioral analysis two mitigation strategies have also been proposed to defend the systems from the ransomware attack. This multi-layered approach for the security of the system will minimize the rate of infection as cybercriminals continue to refine their tactics, making it difficult for the organization's complacent development.
Reliable operation of power systems is a primary challenge for the system operators. With the advancement in technology and grid automation, power systems are becoming more vulnerable to cyber-attacks. The main goal of adversaries is to take advantage of these vulnerabilities and destabilize the system. This paper describes a game-theoretic approach to attacker / defender modeling in power systems. In our models, the attacker can strategically identify the subset of substations that maximize damage when compromised. However, the defender can identify the critical subset of substations to protect in order to minimize the damage when an attacker launches a cyber-attack. The algorithms for these models are applied to the standard IEEE-14, 39, and 57 bus examples to identify the critical set of substations given an attacker and a defender budget.
Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.
Cyber security return on investment (RoI) or return on security investment (RoSI) is extremely challenging to measure. This is partly because it is difficult to measure the actual cost of a cyber security incident or cyber security proceeds. This is further complicated by the fact that there are no consensus metrics that every organisation agrees to, and even among cyber subject matter experts, there are no set of agreed parameters or metric upon which cyber security benefits or rewards can be assessed against. One approach to demonstrating return on security investment is by producing cyber security reports of certain key performance indicators (KPI) and metrics, such as number of cyber incidents detected, number of cyber-attacks or terrorist attacks that were foiled, or ongoing monitoring capabilities. These are some of the demonstratable and empirical metrics that could be used to measure RoSI. In this abstract paper, we investigate some of the cyber KPIs and metrics to be considered for cyber dashboard and reporting for RoSI.